Exceptional service in the national interest

HPC Computing & SoC Design @ Sandia National Laboratories

Design Automation for HPC, Clouds, & Server-Class SoCs

Workshop 6, DAC 2015

Michael Holmes Manager, Mixed Signal ASIC/SoC Products Sandia National Laboratories 505-284-9673 <u>mlholme@sandia.gov</u> www.sandia.gov/mstc

June 7, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2015-4153

Sandia Microsystems & Engineering Sciences Applications (MESA)

Silicon Fabrication

400,000 Sq-ft Complex with >650 Employees

Compound Semiconductor

Fabrication

- Trusted Digital, Analog, Mixed Signal & RF
 Integrated Circuits Design
 & Fabrication
- Custom IC Design
 - Secure microcontrollers
 - Analog/Digital/RF
 - Trusted Foundry
 - Tamper Resistant
- Micromachining
- RAD Effects & Assurance
- Failure Analysis, Reliability Physics
- Test & Validation
- 3-D Integration

Modeling, Simulation & Systems Integration

Advanced Computation

- Modeling & Simulation
- COTS Qualification
- Advanced Packaging
- Custom Electronic Components
- System Design & Test

- Compound Semiconductor Epitaxial Growth
- Photonics, Optoelectronics
- MEMS, VCSELs

Materials Research

- Specialized Sensors
- Materials Science
- Nanotechnology, Chem/Bio
- Mixed-Technology Integration & Processing
- III-V Semiconductor Devices
 - Neutron-Immune HBT
 - Rad-hard Optical Links
 - Solid-State RF Devices

HPC/SoC Applications At Sandia

- Remote Sensing
- Traditional Modeling & Simulation Applications
- Biological & Chemical Sensors
- Synthetic Aperture Radar (SAR) -
- In-Situ Data Analysis In Harsh Environments
- Autonomous Operation
- Engineering & Sciences Applications

Many non-traditional HPC applications at Sandia are focused on "Smart Sensors" that require embedded high performance analytic and data reduction capability.

Current HPC Related Research At Sandia

- Superconducting electronics has the potential to decrease power consumption relative to end of roadmap CMOS by 100x while still maintaining high performance.
- Nitrides have higher temperature stability than standard Nb-based process providing potential for 3D scaling.
- Nitride JJ has potential for higher yield relative to Nb/Al-AlOx/Nb.

Proposed Beyond Moore Computing Modular R&D Architecture

JJ-

MEM

- Platform to support incremental integration of BMC technologies
- Can be implemented in today's CMOS and augmented with BMC
- Flexibility to integrate BMC technologies as they are developed
- Scalable architecture
- PMU diagnostics enable...
 - Dynamic adaptive runtime system software capability.
 - Measurement of data movement and energy consumption for caches buses and memory.
- Network / architecture to achieve maximum flexibility?

3D & Heterogeneous Integration @ Sandia

Technologies

- Indium Bump
- Oxide-Oxide Bond
- Low Volume, High Reliability
- Custom Platforms (R&D & Production)
- Heterogeneous Integration (III-V, Etc.)
 - III-V (GaAs, InP, Etc.)
- Heterogeneous CMOS Post Processing
 - Resistive Memory (Memristors)
 - Aluminum Nitride (AIN) Resonator

Applications

- Image Sensor Hybridization (dual layer)
- Multi-layer (4+) 3D microsystems & sensors
- High Performance Computing
 - BMC Modular Architecture
 - Stack-N-Pack (CPU-Memory-CPU)

		Indium Bump	Oxide Bond
Density		Moderate	High
Minimum Pitch		10-15µm	<10µm
Method		D2D, D2W	W2W
Underfill?		Yes	No
Maturity @SNL		Moderate	In Development
W2W D2W D2D	 Wafer To Wafer Bonding Die To Wafer Bonding Die To Die Bonding 		

HPC R&D 3D Integration Considerations

- Circuit/Function Partitioning & Placement Strategy
 - Performance & Density Requirements
 - Power/Thermal Dissipation
 - Yield & Test
- Testing & Failure Analysis Strategy
 - BIST, ATPG, JTAG, Etc.
 - Wafer Probe, Known-Good-Die/Stack, Wafer Mapping, Etc.
- Thermal Modeling (Thermo-Electrical & Thermo-Mechanical) & Packaging
- Layer-to-Layer Interconnect Density
 - Through-Silicon-Via (TSV) & Face-To-Face Bond Requirements (diameter, pitch)
 - Stacked Alignment Accuracy
- Wafer Level vs. Die Level Requirements Assembly & Cost
 - Most High Density Processes Require Wafer-To-Wafer Bonding
 - Wafer level processing required to define TSV's and interconnect layers
 - Wafer level processing required to thin wafer backside to reveal TSV's
 - Wafer Level Fabrication At Advanced Technology Nodes Can Be Cost Prohibitive For R&D
 - Costs Are More Manageable Using Multi-Project Wafer (MPW) Runs
 - Wafer contains designs for other users; Often only die are ultimately available, which can complicate 3D processing approach
 - Circuitry must be partitioned to contain interconnect density

Sandia Mixed Signal SoC Design

- Full Mixed-Signal IC Design Flow
 - Industry Standard EDA/CAD Tools
 - Mixed-Signal Verification & Co-Simulation
 - SPICE; Verilog-A; AMS; RTL
- SoC Verification
 - Universal Verification (UVM)
 - Formal Verification
- Synthesis & APR Flow
- Intellectual Property (IP)
 - Silicon Fabric/Motherboard SoC Design
 - Integration & Verification
 - Custom IP (Hard & Soft)
- 3D Integration & Verification Flow
 - 3D Automated Place & Route
 - 3D Verification

SoC Design Abstraction Evolution & HPC

- Evolution of abstraction (CMOS)
 - Driven by complexity, cost, & time to market
 - Analogous to the evolution of COTs PCB design
 - Chip scale architecture evaluation & trade space
 - Rapidly optimize architecture to the problem
- New hierarchy of designers in SoC development
 - System level designers drive architecture trades
 - Enabled by rapid prototyping & simulation tools
 - Drives high performance scalable platforms
- Proliferation of suite of IP building blocks
 - Silicon fabric or motherboard (3D?)
 - Reduced cost and risk
 - Pre-verified IP with design kits
 - Verification suite
 - Optimized for yield and manufacturing
- How do we enable/evolve abstraction for BMC technologies?

Comments On HPC R&D Rapid Prototyping & EDA

- Development of new advanced verification techniques, increased abstraction, and expanded capacity will support larger verification scope and hardware-software codesign.
- How do we facilitate integration of BMC technologies?
 - Technologies can't be abstracted same way as CMOS (i.e. super-conducting logic).
 - How readily can these technologies be incorporated into existing EDA?
- Tighter EDA integration for 3D IC capabilities and standards will be required.
 - 3D Aware Routing
 - 3D Layout Vs. Schematic (LVS)
 - Floorplanning & Architecture Exploration (Partitioning)
 - Thermal aware design tools (Thermo-Electrical & Thermo-Mechanical)
 - Manufacturing defect detection (BIST, ATPG, DFT). Currently there are many techniques but not all are automated or integrated with industry standard CAD tools.
- Access to low cost, low volume, 3D integration technologies will facilitate R&D and heterogeneous BMC technology integration.
- Development of 3D failure analysis techniques will be required to improve yield and understand defects.