HPC Computing & SoC Design @ Sandia National Laboratories

Design Automation for HPC, Clouds, & Server-Class SoCs

Workshop 6, DAC 2015

Michael Holmes
Manager, Mixed Signal ASIC/SoC Products
Sandia National Laboratories
505-284-9673
mlholme@sandia.gov
www.sandia.gov/mstc

June 7, 2015
Sandia Microsystems & Engineering Sciences Applications (MESA)

400,000 Sq-ft Complex with >650 Employees

• Trusted Digital, Analog, Mixed Signal & RF Integrated Circuits Design & Fabrication
• Custom IC Design
 - Secure microcontrollers
 - Analog/Digital/RF
 - Trusted Foundry
 - Tamper Resistant
• Micromachining
• RAD Effects & Assurance
• Failure Analysis, Reliability Physics
• Test & Validation
• 3-D Integration

• Compound Semiconductor Fabrication

• Silicon Fabrication

• Modeling, Simulation & Systems Integration

• Advanced Computation
• Modeling & Simulation
• COTS Qualification
• Advanced Packaging
• Custom Electronic Components
• System Design & Test

• Compound Semiconductor Epitaxial Growth
• Photonics, Optoelectronics
• MEMS, VCSELs
• Specialized Sensors
• Materials Science
• Nanotechnology, Chem/Bio
• Mixed-Technology Integration & Processing
• III-V Semiconductor Devices
 - Neutron-Immune HBT
 - Rad-hard Optical Links
 - Solid-State RF Devices

• Materials Research
HPC/SoC Applications At Sandia

- Remote Sensing
- Traditional Modeling & Simulation Applications
- Biological & Chemical Sensors
- Synthetic Aperture Radar (SAR)
- In-Situ Data Analysis In Harsh Environments
- Autonomous Operation
- Engineering & Sciences Applications

Many non-traditional HPC applications at Sandia are focused on “Smart Sensors” that require embedded high performance analytic and data reduction capability.
HPC Related Research At Sandia

- Silicon Photonics
- High Performance Computing (HPC) Architectures
- Beyond Moore Computing (BMC)
- Advanced Memories
- Neuro Inspired Algorithms
- 3D/Heterogeneous Integration
- Performance Measurement Units
- System Software Development
Current HPC Related Research At Sandia

- **Processing-In-Memory-and-Storage Using Advanced Memory (PIMS)**
 - Physical Implementation
 - Base layer ➔ PIMS Logic & Advanced Memory
 - Target Applications
 - Scientific
 - Neuromorphic
 - Data Analytics

- **Niobium Nitride-Based Josephson Junction Memory & 3D Integration for Scalable, Low-Power, High Performance Computing**
 - Superconducting electronics has the potential to decrease power consumption relative to end of roadmap CMOS by 100x while still maintaining high performance.
 - Nitrides have higher temperature stability than standard Nb-based process providing potential for 3D scaling.
 - Nitride JJ has potential for higher yield relative to Nb/Al-AlOx/Nb.
Proposed Beyond Moore Computing Modular R&D Architecture

- Platform to support incremental integration of BMC technologies
- Can be implemented in today’s CMOS and augmented with BMC
- Flexibility to integrate BMC technologies as they are developed
- Scalable architecture
- PMU diagnostics enable...
 - Dynamic adaptive runtime system software capability.
 - Measurement of data movement and energy consumption for caches, buses and memory.
- Network / architecture to achieve maximum flexibility?
3D & Heterogeneous Integration @ Sandia

- **Technologies**
 - Indium Bump
 - Oxide-Oxide Bond
- **Low Volume, High Reliability**
- **Custom Platforms (R&D & Production)**
- **Heterogeneous Integration (III-V, Etc.)**
 - III-V (GaAs, InP, Etc.)
- **Heterogeneous CMOS Post Processing**
 - Resistive Memory (Memristors)
 - Aluminum Nitride (AlN) Resonator
- **Applications**
 - Image Sensor Hybridization (dual layer)
 - Multi-layer (4+) 3D microsystems & sensors
 - High Performance Computing
 - BMC Modular Architecture
 - Stack-N-Pack (CPU-Memory-CPU)

<table>
<thead>
<tr>
<th></th>
<th>Indium Bump</th>
<th>Oxide Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Minimum Pitch</td>
<td>10-15µm</td>
<td><10µm</td>
</tr>
<tr>
<td>Method</td>
<td>D2D, D2W</td>
<td>W2W</td>
</tr>
<tr>
<td>Underfill?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Maturity @SNL</td>
<td>Moderate</td>
<td>In Development</td>
</tr>
</tbody>
</table>

Abbreviations

- **W2W** = Wafer To Wafer Bonding
- **D2W** = Die To Wafer Bonding
- **D2D** = Die To Die Bonding
HPC R&D 3D Integration Considerations

- Circuit/Function Partitioning & Placement Strategy
 - Performance & Density Requirements
 - Power/Thermal Dissipation
 - Yield & Test

- Testing & Failure Analysis Strategy
 - BIST, ATPG, JTAG, Etc.
 - Wafer Probe, Known-Good-Die/Stack, Wafer Mapping, Etc.

- Thermal Modeling (Thermo-Electrical & Thermo-Mechanical) & Packaging

- Layer-to-Layer Interconnect Density
 - Through-Silicon-Via (TSV) & Face-To-Face Bond Requirements (diameter, pitch)
 - Stacked Alignment Accuracy

- Wafer Level vs. Die Level Requirements Assembly & Cost
 - Most High Density Processes Require Wafer-To-Wafer Bonding
 - Wafer level processing required to define TSV’s and interconnect layers
 - Wafer level processing required to thin wafer backside to reveal TSV’s
 - Wafer Level Fabrication At Advanced Technology Nodes Can Be Cost Prohibitive For R&D
 - Costs Are More Manageable Using Multi-Project Wafer (MPW) Runs
 - Wafer contains designs for other users; Often only die are ultimately available, which can complicate 3D processing approach
 - Circuitry must be partitioned to contain interconnect density
Sandia Mixed Signal SoC Design

- Full Mixed-Signal IC Design Flow
 - Industry Standard EDA/CAD Tools
 - Mixed-Signal Verification & Co-Simulation
 - SPICE; Verilog-A; AMS; RTL

- SoC Verification
 - Universal Verification (UVM)
 - Formal Verification

- Synthesis & APR Flow

- Intellectual Property (IP)
 - Silicon Fabric/Motherboard SoC Design
 - Integration & Verification
 - Custom IP (Hard & Soft)

- 3D Integration & Verification Flow
 - 3D Automated Place & Route
 - 3D Verification
SoC Design Abstraction Evolution & HPC

- **Evolution of abstraction (CMOS)**
 - Driven by complexity, cost, & time to market
 - Analogous to the evolution of COTs PCB design
 - Chip scale architecture evaluation & trade space
 - Rapidly optimize architecture to the problem

- **New hierarchy of designers in SoC development**
 - System level designers drive architecture trades
 - Enabled by rapid prototyping & simulation tools
 - Drives high performance scalable platforms

- **Proliferation of suite of IP building blocks**
 - Silicon fabric or motherboard (3D?)
 - Reduced cost and risk
 - Pre-verified IP with design kits
 - Verification suite
 - Optimized for yield and manufacturing

- **How do we enable/evolve abstraction for BMC technologies?**
Comments On HPC R&D Rapid Prototyping & EDA

- Development of new advanced verification techniques, increased abstraction, and expanded capacity will support larger verification scope and hardware-software co-design.

- How do we facilitate integration of BMC technologies?
 - Technologies can’t be abstracted same way as CMOS (i.e. super-conducting logic).
 - How readily can these technologies be incorporated into existing EDA?

- Tighter EDA integration for 3D IC capabilities and standards will be required.
 - 3D Aware Routing
 - 3D Layout Vs. Schematic (LVS)
 - Floorplanning & Architecture Exploration (Partitioning)
 - Thermal aware design tools (Thermo-Electrical & Thermo-Mechanical)
 - Manufacturing defect detection (BIST, ATPG, DFT). Currently there are many techniques but not all are automated or integrated with industry standard CAD tools.

- Access to low cost, low volume, 3D integration technologies will facilitate R&D and heterogeneous BMC technology integration.

- Development of 3D failure analysis techniques will be required to improve yield and understand defects.