OpenSoC Fabric
An open source, parameterized, network generation tool
David Donofrio, Farzad Fatollahi-Fard, George Michelogiannakis, John Shalf
DAC 2015 – San Francisco, CA
June 7, 2015
Technology Investment Trends

Image below From Tsugio Makimoto: ISC2006

- **1990s** – R&D in computing dominated by desktop market
- **2000’s** – R&D investments moving rapidly towards consumer electronics and embedded
Trends continue today...
IDC 2010 Market Study

Worldwide Intelligent Systems Unit Shipments Comparison - Embedded Systems vs. Mainstream Systems 2011 Share and Growth

Notes:
Size of bubble equals 2011 share of system shipments. Growth of cell phone system shipments is driven by smartphones and multi core processor designs.
Building an SoC for HPC

Is this a good idea?

- Consumer market dominates PC and server market
 - Smartphone and tablets are in control
 - Huge investments in IP, design practices, etc.
- HPC is power limited (delivered performance/watt)
 - Embedded has always been driven by max performance/watt (max battery life) and minimizing cost
- HPC and embedded requirements are now aligned
 - ...and now we have a very large commodity ecosystem
- *Why not leverage technologies for the embedded and consumer for HPC?*
Looking back…
Some previous HPC system designs based on semi-custom SoCs
Applying Embedded to HPC (climate)

Must maintain 1000x faster than real time for practical climate simulation

- ~2 million horizontal subdomains
- 100 Terabytes of Memory
 - 5MB memory per subdomain
- ~20 million total subdomains
 - Nearest-neighbor communication
- New discretization for climate model
 - CSU Icosahedral Code

200km
Typical resolution of IPCC AR4 models

25km
Upper limit of climate models with cloud param

~2km
Cloud system resolving models transformational
Green Flash
A full system design

<table>
<thead>
<tr>
<th>System Arch</th>
<th>45nm</th>
<th>22nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores per Chip</td>
<td>128</td>
<td>512</td>
</tr>
<tr>
<td>Clock Freq</td>
<td>650 MHz</td>
<td>650 MHz</td>
</tr>
<tr>
<td>Gflops / core</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Cache / core</td>
<td>256 KB</td>
<td>256 KB</td>
</tr>
<tr>
<td>Gflops / chip</td>
<td>166</td>
<td>666</td>
</tr>
<tr>
<td>Subdomains / chip</td>
<td>4 x 4 x 8</td>
<td>8 x 8 x 8</td>
</tr>
<tr>
<td>Total Cores</td>
<td>20,971,520</td>
<td>20,971,520</td>
</tr>
<tr>
<td>Total Chip count</td>
<td>163,840</td>
<td>40,960</td>
</tr>
</tbody>
</table>

- 167,772,162 vertices at ~2 km
- Rectangular, 2-D decomposition
 - 2,621,440 horizontal domains
 - 20,971,520 vertical domains
- 28 PF Sustained
- 1.8 PB Memory
Berkeley Supercomputer Predicts Your Doom

Photo:

Image from Blatch

The University of California at Berkeley is rolling out a new breed of supercomputer, specially designed to predict the challenges presented by climate change, ultimately leading humanity to our doom and the computers to their rightful place as the masters of our earthly domain.

The idea driving the claim that supercomputers can be revolutionized is the radical notion that humanity has to completely change our way of life, from our current use of fossil fuels to clean energy. This has to happen quickly, and the cost is astronomical, with supercomputers being the only option for the job.

About
Spicy Senses is written by Ted Rheingold, a passionate thirty-something living in San Francisco. He's started and runs both the biggest dog info, care and community site and cat info and community site (aka Dogster and Catster) and posts articles about online communities and business development at the Dogster, Inc. company blog.

Recent Mini-Updates
- Now that's a perfect fit! Big congrats @dshen http://ds.ly/1KnVnR. Help more great things grow. about 2 hours ago
- Sleeping lamb, smiling monkey http://p.lxli.com/p/96517546 about 3 hours ago
- @saratkins: are u an Instagram on path? Been posting more there. Mabel was conceived just before or after (ops) the 4 of us had drinks ;)) about 3 hours ago
- @Alolsus happy birthday! And invite me when u do! 1 day ago

Firefox Extension

Who Is This Person?
Research a person by searching their name against relevant websites.

Recent Site Readers

You!
Green Wave
Apply principles of Green Flash to a new problem – 2009-2012

- Seismic imaging used extensively by oil and gas industry
 - Dominant method is RTM (Reverse Time Migration)
- RTM models acoustic wave propagation through rock strata using explicit PDE solve for elastic equation in 3D
 - High order (8th or more) stencils
 - High computational intensity
Green Wave Design Study
Seismic Imaging

Performance

Energy Efficiency

Green Wave Inc. 2010
Embedded SoC Efficiency Competitive with cutting-edge designs

Green Wave Inc. 2010
So what does this cost?

Total cost: $20 Mil using the assumptions below:
(Courtesy Marty Deneroff, Green Wave, Inc.)

- Current established (Not Bleeding Edge!) process
- Large (near reticle limit) die size
- Vendors understand what you are doing, trust your competence
- $5M NRE to Silicon Integrator
 - Physical design
 - Package design
 - Test design
 - Mask & proto charges

- $5M for IP
- $2M for CAD tools
- $8M for engineering salaries and expenses
 - 20% architecture / logic design
 - 20% system software development
 - 30% Design Verification
 - 30% Floorplanning / placement / vendor engagement
Green Wave Chip Block Diagram
Courtesy Marty Deneroff, Green Wave, Inc.

- 12 x 12 2D on-chip torus network
- 676 Compute cores (500 in compute clusters, 176 in peripheral clusters)
- 33 Supervisory cores
- 1 PCI express interface
- 8 Hybrid Memory Cube (HMC) interfaces
- 1 Flash controller
- 1 1000BaseT Ethernet controller

It is not anticipated that all cores will be utilized – some are spares for yield enhancement.
Inspiration from the Embedded Market

- Have most of the IP and experience with low-power technology
 - Have sophisticated tools for rapid turn-around of designs
- Vibrant commodity market in IP components
 - Change your notion of “commodity”!
 - It’s commodity IP on the chip (not the chip itself!)
- Design validation / verification dominate cost
- Convergence with HPC requirements
 - Need better computational efficiency and lower power with greater parallelism
Integration is Key
What if we had method of quickly integrating the IP that is readily available for the embedded market?
Embracing Integration

What happens when you stop caring about core power

- Future chips will have many lightweight cores for computation
 - Power per core will drop to mW – does not imply energy efficiency
 - Similar to embedded cores...

- Integrated IP will differentiate processors
 - Also efficiency gains in what we do not include

- Need powerful networks to connect cores to memory(s), external IO and each other
Building an SoC from IP Logic Blocks
It’s Legos with a some extra integration and verification cost

Processor Core (ARM, Tensilica, RISC-V, etc)
With possible HPC extensions like DP FPU, ECC

OpenSoC Fabric (on-chip network)
(currently proprietary ARM or Arteris)

DDR memory controller
(Denali/Cadence, SiCreations)
+ Phy & Programmable PLL

PCle Gen3 Root complex

Integrated FLASH Controller

10GigE or IB DDR 4x Channel
Network on Chip Overview
SoC - NoC Topology Examples

Some common topologies
Hierarchical Power Costs

Data movement is the dominant power cost

- 6 pJ: Cost to move data 1 mm on-chip
- 100 pJ: Typical cost of a single floating point operation
- 120 pJ: Cost to move data 20 mm on chip
- 250 pJ: Cost to move off-chip, but stay within the package (SMP)
- 2000 pJ: Cost to move data off chip into DRAM
- ~2500 pJ: Cost to move data off chip to a neighboring node
Network Architecture Impact
Topo logic choice influences application performance

An analysis of on-chip interconnection networks for large-scale chip multiprocessors
ACM Transactions on computer architecture and code optimization (TACO), April 2010
What tools exist for NoC research

What Tools Do We Have to Evaluate Large, Complex Networks of Cores?

- **Software models**
 - Fast to create, but plagued by long runtimes as system size increases

- **Hardware emulation**
 - Fast, accurate evaluate that scales with system size but suffers from long development time

A complexity-effective architecture for accelerating full-system multiprocessor simulations using FPGAs. FPGA 2008
Software Models
C++ based on-chip network simulators

- **Booksim**
 - Cycle-accurate
 - Verified against RTL
 - Few thousand cycles per second

- **Garnet**
 - Event driven
 - Simulation speed limits designs to 100’s of cores

![Graph showing throughput vs. injection rate](image1)

![Graph showing latency vs. injection rate](image2)

Booksims ISPASS 2013
GARNET ISPASS 2009
Hardware Models
HDL network generators and implementations

- **Stanford open-source NoC router**
 - Verilog
 - Precise but long simulation times

- **Connect network generation**
 - Bluespec
 - FPGA Optimized

CONNECT: fast flexible FPGA-tuned networks-on-chip.
CARL 2012
OpenSoC Fabric
An Open-Source, Flexible, Parameterized, NoC Generator

- **SoC technology gaining momentum in HPC**
 - On-chip networks evolving from simple crossbar to sophisticated networks
 - Need new tools and techniques to evaluate tradeoffs

- **Chisel-based**
 - Allows high level of parameterization
 - Dimensions, topology, VCs, etc. all configurable
 - Fast, functional SW model with SystemC integration
 - Verilog model for FPGA and ASIC flows

- **Multiple Network Interfaces**
 Integrate with Tensillica, RISC-V, ARM, etc.
Chisel: Hardware DSL
Constructing Hardware In a Scala Embedded Language

- Chisel provides both software and hardware models from the same codebase
- Object-oriented hardware development
 - Allows definition of structs and other high-level constructs
- Powerful libraries and components ready to use
- Working processors fabricated using Chisel
OpenSoC Configuration

OpenSoC is a fully configurable hardware generator

› OpenSoC configured at run time through Parameters class
 • Declared at top level, sub modules can add / change parameters tree

› Not limited to just integer values
 • Leverage Scala to pass functions to parameterize module creation
 - Example: Routing Function constructor passed as parameter to router
Configuration options
A few of the current run time configuration parameters

- **Network Parameters**
 - Dimension
 - Routers per dimension
 - Concentration
 - Virtual Channels
 - Topology
 - Queue depths
 - Routing Function

- **Packet / Flit Parameters**
 - Flit widths
 - Packet types / lengths

- **Testing Parameters**
 - Pattern
 - Neighbor, random, tornado, etc
 - Injection Rate

Highly modular architecture supports FUB replacement
Developing
Incredibly Fast Development Time

- Modules have a standard interface that you inherit
- Development of modules is very quick
 - Flattened Butterfly took 2 hours of development

abstract class Allocator(parms: Parameters)
 extends Module(parms) {
 val numReqs = parms.get[Int]("numReqs")
 val numRes = parms.get[Int]("numRes")
 val arbCtor = parms.get[Parameters=>Arbiter]("arbCtor")
 val io = new Bundle {
 val requests = Vec.fill(numRes)
 { Vec.fill(numReqs)
 { new RequestIO }.flip }
 val resources = Vec.fill(numRes)
 { new ResourceIO }
 val chosens = Vec.fill(numRes)
 { UInt(OUTPUT, Chisel.log2Up(numReqs)) }
 }
 }
}

class SwitchAllocator(parms: Parameters)
 extends Allocator(parms) {
 // Implementation
}
Results

4x4 DOR Mesh of Single Concentration with Uniform Random Traffic

Head Flit Latency

8x8 Dimension-Ordered Mesh Concentration 1
More Information and Download
http://www.opensocfabric.org