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Technology Investment Trends
Image below From Tsugio Makimoto: ISC2006

» 1990s - R&D in computing dominated by desktop
market

» 2000’s - R&D investments moving rapidly towards
consumer electronics and embedded

. Market in Japan(B$)
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Trends continue today...

Worldwide Intelligent Systems Unit Shipments Comparison - Worldwide Systems Unit Shipments - Traditional Embedded
Embedded Systems vs. Mainstream Systems 2011 Share and \ Jipe
Growth Systems vs. Mainstream Systems, 2005-2015 (Millions)
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Building an SoC for HPC

» Consumer market dominates PC and server market
Smartphone and tablets are in control
Huge investments in IP, design practices, etc.

» HPC is power limited (delivered performance/watt)

Embedded has always been driven by max performance/watt
(max battery life) and minimizing cost

» HPC and embedded requirements are now alignhed

...and now we have a very large commodity ecosystem

» Why not leverage technologies for the embedded
and consumer for HPC?
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Looking back...

Some previous HPC system designs based on
semi-custom SoCs
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Applying Embedded to HPC (climate)

Must maintain 1000x faster than real time for

practical climate simulation zoo_km
Typical
- . . resolution of
» ~2 million horizontal subdomains PCC ARA
» 100 Terabytes of Memory models
- 5MB memory per subdomain 25Km
» ~20 million total subdomains Upper limit of
climate
- Nearest-neighbor communication models with
cloud param
» New discretization for climate model

- CSU Icosahedral Code ~2km

’ Cloud system
.| resolving models
transformational
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Green Flash

A full system design

Cores per Chip 128 512
Clock Freq 650 MHz 650 MHz
Gflops / core 1.3 1.3
Cache / core 256 KB 256 KB
Gflops / chip 166 666
Subdomains / Ax4x8 8x8x8

chip

Total Cores

20,971,520 20,971,520

Total Chip

163,840
count

40,960

» 167,772,162 vertices at
~2 km

» Rectangular, 2-D
decomposition

- 2,621,440 horizontal
domains

- 20,971,520 vertical
domains

» 28 PF Sustained

» 1.8 PB Memory
@ ENERGY icnc: -
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Green Wave

Apply principles of Green Flash to a new problem —
2009-2012
B i N b e » Seismic imaging used

extensively by oil and gas
industry

Dominant method is RTM
(Reverse Time Migration)

» RTM models acoustic wave
propagation through rock
strata using explicit PDE solve

? ' ' = ' for elastic equation in 3D

High order (8" or more) stencils

High computational intensity

\
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Green Wave Design Study
Seismic Imaging
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Embedded SoC Efficiency Competitive with
Green Wave Inc. 2010

cutting-edge designs
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So what does this cost?
Total cost: $20 Mil

» Current established (Not »  $5M for IP
Bleeding Edge!) process
»  $2M for CAD tools

» Large (near reticle limit)
die size » $8M for engineering salaries

d
» Vendors understand what and expenses

you are doing, trust your 20% architecture / logic design
competence

. 20% system software
Integrator

- - % Design Verificati
Physical design 30% Design Verification

30% Floorplanning / placement /

Package design
J J vendor engagement

Test design
Mask & proto charges
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Green Wave Chip Block Diagram

» 12 x 12 2D on-chip torus network

» 676 Compute cores (500 in
compute clusters, 176 in
peripheral clusters)

» 33 Supervisory cores

» 1 PCI express interface

» 8 Hybrid Memory Cube (HMC)
interfaces

» 1 Flash controller
» 1 1000BaseT Ethernet controller

» Itis not anticipated that all cores
will be utilized - some are spares
for yield enhancement.

Actual network connections form folded torus, not open mesh

Torus connection not shown.
Compute cluster (5 FLIX cores + DMA) [l  HMC Cluster (4 FLIX Cores + DMA + HMC)

Supervisory Cluster ( 4 FLIX cores + DMA + 1 TLB Core ) . Enet Cluster (4 FLIX Cores + DMA + Enet)

. PClexpress Cluster ( 4 FLIX Cores + DMA + PCle) Flash Cluster (4 FLIX Cores + DMA + Flash)
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Inspiration from the Embedded
Market

» Have most of the IP and experience with for low-power
technology

Have sophisticated tools for rapid turn-around of designs
» Vibrant commodity market in IP components
Change your notion of “commodity”!
[t’s commodity IP on the chip (not the chip itself!)
» Design validation / verification dominate cost
» Convergence with HPC requirements

Need better computational efficiency and lower power with
greater parallelism
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Integration is Key

What it we had method of quickly integrating the
IP that is readily available for the embedded
market”?
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Embracing Integration

» Future chips will have many lightweight cores
for computation

Power per core will drop to m\W — does not imply energy
efficiency

Similar to embedded cores...
» Integrated IP will differentiate processors

Also efficiency gains in what we do not include

» Need powerful networks to connect cores to
memory(s), external IO and each other
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Building an SoC from IP Logic Blocks

It's Legos with a some extra integration and verification cost

Processor Core (ARM, Tensilica, RISC-V, etc) i i \[“ oo ] () [zl ()
With possible HPC extensions like DP FPU, ECC A \L—-)
. . SE } oo 0o \ oo \—
OpenSoC Fabric (on-chip network) D
(currently proprietary ARM or Arteris) 05 E o0 L
o
DDR memory controller oh i
(Denali/Cadence, SiCreations) \1 \I D
+ Phy & Programmable PLL
&G_:? oy &G_:? oy
m<|m<
PCle Gen3 Root complex
Integrated FLASH Controller I/0
10GigE or IB DDR 4x Channel
S8 U.S. DEPARTMENT OF Office of
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Network on Chip Overview

R12 FEEEd RI13

N8 i N9 i N10
1 l 1o l 4P
J J J

R8 FEEEd RO FEEE« R10 FEEEs RI11

N4 i N5 i N6
L3V IV 7Y
t) t) t)

R4 FEEEd RS FEEE«S R6 FEEES R7

\\[0] i N1 i N2
L3V IV 7Y
t) t) t)

RO FEEEd Rl FEEE«S R2 FEEES R3

U.S. DEPARTMENT OF Ofﬂce of

EN ERGY Science




SoC - NoC Topology Examples

Some common topologies
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Hierarchical Power Costs

Data movement is the dominant power cost

6 pJ |
Cost to move data 1 mm on-chip
m Typical cost of a single floating point operation
m Cost to move data 20 mm on chip
250 P J Cost to move off-chip, but stay within the
package (SMP)
2000 pJ -
Cost to move data off chip into DRAM
~2500 pJ Cost to move data off chip to a
neighboring node
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Network Architecture Impact
Topology choice influences application performance
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swaptions fluidanimate barnes blkscholes strmcluster ocean canneal svm

An analysis of on-chip interconnection networks for large-scale chip multiprocessors
ACM Transactions on computer architecture and code optimization (TACO), April 2010
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What tools exist for NoC research

» Software models

Fast to create, but
plagued by long
runtimes as system size
INcreases

» Hardware emulation

Fast, accurate evaluate
that scales with system
size but suffers from

long development time

=8=10 MIPS simulator =#=100 MIPS simulator =#=1000 MIPS simulator
1000

900
800
700
600
500
400
300
200
100

0

SW full-system
functional
simulators

Slowdown relative to real system

1 2 4 8 16 32 64 128 256 512 1024
Size of simulated system (# processors)

A complexity-effective architecture for accelerating full-
system multiprocessor simulations using FPGAs. FPGA 2008

oF Office of
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Software Models

C++ based on-chip network simulators
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Hardware Models

Parameter Value } Sta nfo rd open_

Network Topology
Topolgy TR source NoC router
Number of Endpoints 8 =

Network and Router Options

Router Type i Virtual Channel (VC) : Verl |Og

Number of VCs 1 2 3
Flow Control Type % Credit-Based Flow Control = PreCiSe but |Ong
Flit Data Width 64

» Advanced Options (click to exp;nd) SI m Ulatlon tl meS

Contact and Delivery Info

» Connect network

Affiliation

G generation

I have read, understood, and I agree to the license terms

Generate Network <= click here to generate network

Bluespec

CONNECT: fast flexible FPGA-tuned networks-on-chip

CARL 2012 | FPGA Optimized

U.S. DEPARTMENT OF Office of
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OpenSoC Fabric

An Open-Source, Flexible, Parameterized, NoC Generator

» SoC technology gaining momentum
in HPC

On-chip networks evolving from simple
crossbar to sophisticated networks

Need new tools and techniques to evaluate
tradeoffs

» Chisel-based

Allows high level of parameterization

Dimensions, topology, VCs, etc. all configurable

Fast, functional SW model with SystemC
integration

Verilog model for FPGA and ASIC flows

» Multiple Network Interfaces

Integrate with Tensillica, RISC-V, ARM, etc.

OpenSoC

Fabric

2%, U.S. DEPARTMENT OF Office of
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Chisel: Hardware DSL

>

Chisel provides both
software and hardware
models from the same
codebase

Object-oriented
hardware development

Allows definition of
structs and other high-
level constructs

Powerful libraries and
components ready to
use

Wor_kin? processors
fabricated using Chisel

Chisel

Software
Compilation

Hardware
Compilation

SystemC

jon
C++ —
Simulation

b
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FPGA ASIC
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OpenSoC Configuration

» OpenSoC configured at run time through Parameters
class

Declared at top level, sub modules can add / change
parameters tree

» Not limited to just integer values

Leverage Scala to pass functions to parameterize module
creation

Example: Routing Function constructor passed as parameter to
router

Office of
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Configuration options

» Network Parameters » Packet / Flit Parameters

Dimension Flit widths

Routers per dimension Packet types / lengths

Concentration » Testing Parameters
Virtual Channels Pattern
Topology Neighbor, random,

tornado, etc
Queue depths

Routing Function Injection Rate

Office of
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Developing

abstract class Allocator (parms: Parameters)
} MOdUIGS have a extends Module (parms) {

val numReqgs = parms.get[Int] ("numRegs")

Standard interface val numRes = parms.get[Int] ("numRes")

- - val arbCtor = parms.get[Parameters=>Arbiter]
that you inherit ("arbCtorn)
val io = new Bundle {
val requests = Vec.fill (numRes)
» Development of { Vec.£ill (numReqs)
. { new RequestIO }.flip }
r71()(ill|€355 IE; \IEBT}/ val resources = Vec.fill (numRes)
. { new ResourcelIO }
qUICk val chosens = Vec.fill (numRes)

{ UInt (OUTPUT, Chisel.log2Up (numReqgs)) }

Flattened Butterfly |, ’

class SwitchAllocator (parms: Parameters)
tOOk 2 hours Of extends Allocator (parms) {
development
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More Information and Download
http://www.opensocfabric.org
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