

Big shifts in EDA, IP and HPC

Dr. Chris Rowen CTO – IP Group Cadence Design Systems, Inc.

June 7, 2015

cādence[®]

Agenda

- A mainstream view of big compute and advanced EDA/IP
 - System Design Enablement
 - Design and Verification across digital and high-speed analog
 - Universal adoption of IP-rich development
 - New roles for processors
- But the world is changing...

• Example: vision super-computing

Big trends creating opportunities

Cadence focus: System Design Enablement

From end product down to chip level

cādence[®]

HPC: Compute + memory bandwidth + high-speed IO Digitally-rich but high-speed analog also crucial

© 2014 Cadence Design Systems, Inc. All rights reserved. 5

New Integrated Digital Flow: Genus and Innovus

- Digital implementation tools share a common infrastructure
 - Analysis
 - Tempus Timer Same SDC and View setup files for whole flow
 - Quantus Extractor Same R/C rules for whole flow
 - Voltus IR, Power and EM Same EM for whole flow
 - User Interface
 - Consistent tcl commands run whole flow
 - Easy to learn and reuse across different tools
 - Powerful reporting utilities
- 10-20% better PPA
- Up to 10x TAT & capacity

6 © 2014 Cadence Design Systems, Inc. All rights reserved.

Integration is not just about the silicon design

- Allegro platform: system-in-package
 - Multi-radio gateway board & package design
 - Sigrity for gateway board & package signal integrity analysis
 - Mixed-signal design & verification across fabrics
 - OrCAD platform: system-on-board
- Virtuoso & Encounter platforms: system-on-chip
- Incisive & Virtual System platforms: system-on-chip HW/SW verification
- Palladium & Rapid Prototyping platforms: full system development

IP – A Path for Getting to Market Faster Cadence is a trusted partner enabling customer innovation

Design IP	 Fastest Growing segment share 1st to adv. nodes with DDR, PCIe[®] Highest performance Analog IP 						
Tensilica [®] IP	 #1 in DSP IP licensing, #2 royalty bearing shipments Shipping over 2 Billion cores/year 225+ licensees world wide 						
Verification IP	 #1 in Verification IP segment share 100% adoption by top 30 semiconductor companies 500+ customers world wide 						

Cadence IP Portfolio Broad and growing solution

cādence®

Cadence VIP Catalog product line Supports all major simulators and verification languages

Simulation VIP						Memory Models					Accelerated VIP				
ARM AMBA 5 CHI	ARM AMBA 4 ACE	ARM AMBA AXI 3/4	ARM AMBA AHB	ARM AMBA 4 Stream	Cellular SRAM	Compact FLASH	DDR DIMM	DDR SDRAM	DDR Sync GFX RAM	DDR Sync RAM	ARM AMBA 5 CHI*	ARM AMBA 4 ACE	ARM AMBA AXI 3/4	ARM AMBA AHB	
CAN	Display Port	Ethernet 10/100 1G/10G	Ethernet 25G/50G	Ethernet 40G/100G	DDR2	DDR3	DDR4 Incl. 3DS	DDR4 LRDIMM	DDR4 SDRAM	Delay line	ARM AMBA APB	Ethernet 10/100 1G/10G	Ethernet 25G/50G*	Ethernet 40G/100G	
HDMI 1.4	HDMI 2.0	I2C	JTAG cJTAG	LIN	DFI	Embed. SSRAM	Embed. SSRAM TI	eMMC 4.4	eMMC 4.5	eMMC 5.0	HDMI 1.4	HDMI 2.0*	I2C	I2S	
MHL 3.0	MIPI CSI- 2	MIPI CSI- 3	MIPI C-PHY	MIPI DigRF	Enhance d SDRAM	FCRAM	FIFO	FLASH (basic)	FLASH ONFi	Flash ONFi 3/4	Keypad	MIPI CSI- 2	MIPI DBI	MIPI DSI	
MIPI D-PHY	MIPI DSI incl. DBI, DPI	MIPI DSI2 incl. DBI, DPI	MIPI LLI 2.0	MIPI M-PHY	FLASH PPN DDR	FLASH Toggle NAND	FLASH Toggle NAND 2	GDDR2	GDDR3	GDDR4	MIPI UniPro*	NVM Express*	PCle Gen2/3	PCIe SR-IOV*	
MIPI SLIMbus	MIPI Sound Wire	MIPI UniPro	NVM Express	OCP 2.2	нвм	нмс	LBA NAND	LL DRAM	LPDDR	LPDDR2	SATA 3G/6G Device	SIM Card	USB 2.0 w/ OTG*	USB 3.0 Host*	
OCP 3.0	PCI	PCle [©] Gen2	PCle Gen3	PCle Gen4	LPDDR3	LPDDR4	LR DIMM	Memory Stick	Memory Stick Pro	NAND FLASH	Pr	Producti		ols ^{*beta}	
PCle SR-IOV	PCIe MR-IOV	M-PCle	PLB 6	SAS 6G	NOR FLASH Spansion	One NAND FLASH	PROM	Pseudo Burst SRAM	QDR SRAM	Rambus DRAM	Interconnect Inter		Debug A onnect In	Debug App	
SAS 12G	SATA 6G	SRIO 2.1	SRIO 3.0	UART	Rambus Turbo Mode	Register File	RL DRAM	Scratch pad	SD Card	SD Card 3.0	Basic	Coh Coh	erent W	orkbench	
USB 2.0 w/ OTG	USB 3.0 w/ OTG	USB 3.1 w/ OTG	USB SSIC	Wireless 802.11 MAC	SD Card 4.0	SDIO	Synch DRAM	Synch Mask ROM	Synch RAM NEC	UFS 1.0	40G/100 ASS	ertion-	JniPro Po Based	CI Express	
					UFS 2.0	Wide I/O	Wide I/O 2				ARM AMBA ACE	ARM AMBA AXI	ARM AMBA AHB	DFI	
10 © 2015 Cadence Design Systems, Inc. All rights reserved.										ОСР	сā	d e n	c e°		

© 2015 Cadence Design Systems, Inc. All rights reserved. 10

Tensilica IP is #2 overall in shipments of royalty-bearing, licensable processors (CPU or DSP)

11 © 2014 Cadence Design Systems, Inc. All rights reserved.

Tensilica automated hardware/software synthesis

Architects' needs:

- Higher compute throughput
- More memory bandwidth
- Higher efficiency control structure update
- Continuous software
 upgrade of EVERYTHING

No manual intervention needed in hardware or software completeness

Full hardware design

Xtensa LX6 Block Diagram - System

13 © 2014 Cadence Design Systems, Inc. All rights reserved.

Example: Flash-Based Memory Systems with Smart Storage Processors

14 © 2014 Cadence Design Systems, Inc. All rights reserved.

cādence[®]

Agenda

A mainstream view of big compute and advanced EDA/IP

• But the world is changing...

- The new data imperative
- Energy and layered cognition
- Scaling to ultra-low power
- Example: vision super-computing

Sources:

Rick Zarr, TI, 2008- The True Cost of an Internet "Click" - estimate of transfer cost for 30KB page from server: http://energyzarr.typepad.com/energyzarr.ationalcom/2008/08/the-true-cost-o.html

· J Kunkel et al, University of Hamburg 2010, Collecting Energy Consumption of Scientific Data

Horowitz ISSCC 2014, 1300-2600 pJ per 64b access

Energy and layered cognition

Active Power per Processor

Scaling to ultra-low-energy *Xtensa core scales from ~1uW/MHz to 1.5GHz*

Near-threshold core development

- SPICE (SPECTRE APS) simulation of full Tensilica base 32b processor core
- Verifies correctness, speed and power independent of library characterization.
- Full parasitics extracted circuit gives accurate power and functionality
- Running basic power and functionality diagnostics
- Optimally-pipelined core runs >1.5GHz in16FF, but same RTL also achieves micro-power level. Sustains high MHz at lower voltage

cādence[®]

Agenda

A mainstream view of big compute and advanced EDA/IP

But the world is changing...

- Example: vision super-computing
 - Vision DSPs
 - Convolutional Neural Network compute
 - Hybrid architectures for high-density computation

Tensilica IVP Vision DSPs

- A family of high-performance DSPs for imaging, video and vision
- Rich SIMD/VLIW architecture
 - o 4-way instruction issue
 - $\circ~$ Up to 200 separate ALU operations per cycle
- Huge pixel bandwidth
 - Integrated DMA for data streaming
 - >2000b per cycle data memory bandwidth
- Rich software environment
 - World's best DSP C compilers: **0** assembly code
 - Full OpenCV and OpenVX support with 800 optimized functions
 - $\circ~$ Wide third-party program and support

DDR

cādence[®]

IVP-EP A new category of application performance

Example: Convolutional Neural Network (CNN) Sorting through the hype

Vision supercomputing

- 80-90% of internet traffic is video/image
- Expect image recognition, video analytics, augmented reality, visual AI to grow to similar % of compute
- By 2020, world's image sensors will theoretically capture 10²⁸B/year
- Key characteristics of visual HPC:
 - 1. Applications in flux
 - 2. High-bandwidth data * very large parameter sets e.g. for CNN weights
 - 3. Need extreme compute efficiency, yet high flexibility in algorithms, data reference patterns and data types.
- Expect "cognitive layering" in computing architectures – 95% of ops in 5% of code

DDR Resources

CNN Engine Example

- Demonstration of a specialized DSP • architecture using TIE on Xtensa source available
- Very high throughput (256 16x8 • MAC/cycle) on filter and convolution algorithms for vision and object recognition
- Architecture: •
 - 512 x 8 data vectors (3r/1w)
 - 2048 x 2 accumulators (1r/1w) •
 - 512 x 2 align regfile 1r/1w) •
 - 2 slot, 40b instruction width, 47 added ops
 - 48GB/s local data BW/core
- High compute density:
 - 4x higher efficiency than IVP-EP
 - 9T full layout

24

- With 32KB I/ 64 KB D
- 0.95mm² @ 750MHz
- 200 GMACS/mm²

CNN Engine Area vs. MHz (WC) 800,000 700,000 600.000 500,000 Area (μm²) 400,000 300,000 200,000 28hpm 12t synth cell area 100,000 28hpc 7t synth cell area 28hpc 9t synth cell area - ⊖ - 28hpc 9t layout core area 400 800 1000 600 MHz

Huge upside in vision platform performance: >60 Trillion ops per 100mm²

A closing thought Specialization \rightarrow proliferation of designs

Agenda

A mainstream view of big compute and advanced EDA/IP

- System Design Enablement
- Design and Verification across digital and high-speed analog
- Universal adoption of IP-rich development
- New roles for processors

• But the world is changing...

- The new data imperative
- Energy and layered cognition
- Scaling to ultra-low power

Example: vision super-computing

- Vision DSPs
- Convolutional Neural Network compute
- Hybrid architectures for high-density computation

cādence®