State-of-Art (SoA) System-on-Chip (SoC) Design
HPC SoC Workshop

Michael Holmes
Manager, Mixed Signal ASIC/SoC Products
Sandia National Laboratories
505-284-9673
August 26, 2014
Sandia Microsystems & Engineering Sciences Applications (MESA)

400,000 Sq-ft Complex with >650 Employees

- **Trusted Digital, Analog, Mixed Signal & RF Integrated Circuits Design & Fabrication**
- **Custom IC Design**
 - Secure microcontrollers
 - Analog/Digital/RF
 - IBM Trusted Foundry
 - Tamper Resistant
- **Micromachining**
- **RAD Effects & Assurance**
- **Failure Analysis, Reliability Physics**
- **Test & Validation**
- **3-D Integration Features**

- **Advanced Computation**
- **Modeling & Simulation**
- **COTS Qualification**
- **Advanced Packaging**
- **Custom Electronic Components**
- **System Design & Test**

- **Silicon Fabrication**

- **Compound Semiconductor Fabrication**

- **Materials Research**
 - Compound Semiconductor Epitaxial Growth
 - Photonics, Optoelectronics
 - MEMS, VCSELS
 - Specialized Sensors
 - Materials Science
 - Nanotechnology, Chem/Bio
 - Mixed-Technology Integration & Processing
 - III-V Semiconductor Devices
 - Neutron-Immune HBT
 - Rad-hard Optical Links
 - Solid-State RF Devices

- **Modeling, Simulation & Systems Integration**
Sandia Microelectronics Development

- Develop *digital, analog, and mixed-signal integrated circuits (IC)* along with a deep understanding of technology offerings and design methodologies
- Develop *trusted* integrated circuits
 - Access to trusted resources and facilities for design, layout, fabrication, packaging, test, qualification, and product delivery assuring full chain-of-custody
 - On-shore, US owned
 - Security clearances, processes and/or facilities
 - DOD trusted accreditation
 - Mature relationship with IBM Trusted foundry using advanced technology
 - Access to other government trusted suppliers
- Develop *radiation hardened* integrated circuits
 - Access to strategic radiation hardened in-house technology
 - Radiation hardened by design for commercial technologies
- Develop *high-reliability* integrated circuits for *high consequence systems*
 - Weapons system components
 - Security-based and/or classified components
- Deliver *low volume* integrated circuits
 - Providing ICs where commercial industry cannot or will not supply
Sandia Trusted Design

- Delivering ASICs from Sandia Radiation Hardened Trusted Foundry
 - Meets the needs for strategic radiation hardened programs
 - Flexible to accommodate research activities
- IBM Trusted Foundry: 52 Designs

- History and Experience with Other Trusted Suppliers
 - National Semiconductor Corporation Foundry
 - Honeywell Foundry
 - Partnerships with Northrop Grumman
 - Jazz Semiconductor
Sandia Mixed Signal SoC Design

- Full Mixed-Signal IC Design Flow
 - Industry Standard EDA/CAD Tools
 - Mixed-Signal Verification & Co-Simulation
 - SPICE; Verilog-A; AMS; RTL

- SoA SoC Verification
 - Universal Verification (UVM)
 - Formal Verification

- SoA Synthesis & APR Flow

- Intellectual Property (IP)
 - Silicon Fabric/Motherboard SoC Design
 - Integration & Verification
 - Custom IP (Hard & Soft)

- 3D Integration & Verification Flow
 - 3D Automated Place & Route
 - 3D Verification
SoC Design Abstraction Evolution & HPC

- Evolution of abstraction (Digital/Analog/AMS)
 - Driven by complexity, cost, & time to market
 - Analogous to the evolution of COTs PCB design
 - Chip scale architecture evaluation & trade space
 - Rapidly optimize architecture to the problem

- New hierarchy of designers in SoC development
 - System level designers drive architecture trades
 - Rapid prototyping & simulation tools
 - High performance, scalable, multi-core platforms

- Proliferation of suite of IP building blocks
 - Silicon fabric or motherboard (3D?)
 - Reduced cost and risk
 - Pre-verified IP with design kits
 - Verification suite
 - Optimized for yield and manufacturing

- FPGA SoC platforms
 - Traditional FPGA benefits
 - Less flexibility

Evolution of Digital Design Abstraction

```
<table>
<thead>
<tr>
<th>Architecture</th>
<th>SoC IP Simulation [Vendor Specific]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>System Model [SystemVerilog/SystemC]</td>
</tr>
<tr>
<td></td>
<td>RTL Design [Verilog/VHDL]</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Synthesized Gate Level Netlist [Verilog]</td>
</tr>
<tr>
<td>Physical Design</td>
<td>Physical Netlist [SPICE]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Cell Library Characterization</td>
</tr>
<tr>
<td></td>
<td>Logic Cell Library Timing Library Development [LIB]</td>
</tr>
<tr>
<td></td>
<td>Logic Cell Library Physical Abstraction [GDS, LEF]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Logic Cell Verification [SPICE]</td>
</tr>
<tr>
<td></td>
<td>Logic Cell Definition [Schematic, Netlist]</td>
</tr>
<tr>
<td></td>
<td>Logic Cell Physical Design [GDS]</td>
</tr>
<tr>
<td></td>
<td>BSIM Model Development [UTMOST/VYPER]</td>
</tr>
<tr>
<td></td>
<td>3D Physics Modeling [ATHENA]</td>
</tr>
</tbody>
</table>
```

- Increased Abstraction
- Reduced Simulation Time
- Increased Simulation Scope
- New hierarchy of designers in SoC development
- System level designers drive architecture trades
- Rapid prototyping & simulation tools
- High performance, scalable, multi-core platforms
- Proliferation of suite of IP building blocks
- Silicon fabric or motherboard (3D?)
- Reduced cost and risk
 - Pre-verified IP with design kits
 - Verification suite
 - Optimized for yield and manufacturing
- FPGA SoC platforms
 - Traditional FPGA benefits
 - Less flexibility
3D Integration Development & Commercial Adoption

- Niche applications with specialized process flows
- Requires specialized processing, tools, materials research
- Additional yield loss in handling and process steps
- New design and test paradigms
 - Limited CAD tool support (custom flow development)
 - Combined assembly & test for yield (known good die)
- Limited by additional cost of 2.5D/3D fabrication
 - Through Silicon Via’s (TSV)
 - Precision Etch & Singulation
 - Liner Deposition & Metal Fill
 - Bonding
 - TSV Exposure
 - Backgrinding and Thinning
Commercial Trends

- 2.5D will continue to see extended use and will dominate market first
 - Easy adoption (evolutionary not revolutionary)
- 3D Drivers
 - High performance processors to overcome bandwidth limitations and improve power performance
 - Mixed-signal designs in which analog functionality does not benefit from node shrink (cost savings)
 - Higher cost of adoption, requires new paradigm in design
 - Heterogeneous integration may offset cost of adoption long-term
- Applications drive development
 - High Density Interconnect:
 - Pixelated sensors require high density interconnect, small pitch, millions of connections
 - Can tolerate less than 100% functionality (a dead pixel is “ok”)
 - Low/Medium Density Interconnects:
 - High performance processors and custom heterogeneous solutions will drive low/medium density solutions.
 - Requires high yield and will tolerate larger interconnects.
3D Integration Considerations
Custom u-Systems & Heterogeneous Integration

- Layer-to-Layer Interconnect Density
- TSV Requirements (diameter, pitch)
- Stacked Alignment Accuracy
- Tiling Accuracy Placement Requirements
- Wafer Level vs. Die Level Requirements & Assembly
 - Most High Density Processes Require Wafer-To-Wafer Bonding
 - Wafer level processing required to define TSV’s and interconnect layers
 - Wafer level processing required to thin wafer backside to reveal TSV’s
 - Wafer Level Fabrication At Advanced Technology Nodes Can Be Cost Prohibitive
 - Costs Are More Manageable Using Multi-Project Wafer (MPW) Runs
 - Wafer contains designs for other users; Only die are ultimately available, which can complicate 3D processing approach
 - Circuitry must be partitioned to contain interconnect density