SOC Design for HPC: Technology Analysis & Requirements

Peter M. Kogge McCourtney Prof. of CS & Engr. University of Notre Dame

Acknowledgement: This work was funded in part by the US Dept. of Energy, Sandia National Labs, as part of their Xcaliber and XGC projects.

Thesis

- Today's COTS design typically "inward" focus
- For HPC, "outward" is far more crucial
 - Memory, esp. random access
 - Off-chip bandwidth
- This talk
 - Take-aways from TOP500
 - Take-aways from a Big Data problem
 - Energy discussion
- The biggest gains seem to come from rethinking system architecture
- SOC, if done right, seems to be right direction

Today's Architecture Classes

- Heavyweight: traditional 100+W multi-core
- Lightweight: lower power single chip system
- Hybrid/Heterogeneous: Heavyweight/GPU combination
- **Big/Little**: Same ISA, different microarchitectures
- **Other**: XMT, Convey

We All Know The Story: Unbroken Growth in TOP500 Rmax

Floating Point Efficiency Remains High for Linpack

But Not All Benchmarks Double/Year

Memory Growth Has Slowed

And Memory per Flop/s Is Dropping!

A Real-World Big Data Problem

Configurations

- Baseline: Lexis Nexis HPCC Configuration
 - 100 4-node Blades in 10 racks
- Memory Rich Configuration
 - Same as above but with maxed DRAM for RAM Disk
- 2015 Configuration
 - 4X cores/socket, DRAM, switched Infiniband
- 2015 Configuration with DRAM for RAM Disk
- Lightweight Configurations
 - 2 racks of Calxeda-like ARM-based SOCs
- Xcaliber: Memory Stack-Based
- Xcaliber with all computing at bottom

Possible "Lightweight" System

- Assume Calxeda System on a Chip
 - 4 1-1.4GHz ARM A9 cores w'FPU
 - Single DDR3 2 rank controller
 - Networking: GigE, XAU
 - Supports up to 5 SATA
 - Fabric: 8x8 crossbar, 10Gbps links
 - 3 internal, 5 external
- Calxeda Reference card:

- 4 SATA sockets/SOC for disk connections
- 8 interfaces for off-card fabric
- 2U Blade (based on Boston Viridis Chassis)
 - 12 reference cards + up to 24 SATA
- Assumed Configuration of 40 blades, 2 racks

Images from www.calxeda.com 6/2/12

http://www.boston.co.uk/solutions/viridis/viridis-2u.aspx/

X-Caliber-like Architecture

(b) X-caliber Node Mockup

NOTRE DAME

M's built from 3D stacks of memory Each Stack

- 32 GB DRAM
- 256GB PCM
- Logic chip at bottom
- 64 0.5GB "Vaults"
- 8 full-duplex links - 32 GB/s each dir

Memory System (M) and Embedded Memory Processor (EMP)

EMP

Mern Network Interface

- Two computation Units
 - Right next to the DRAM vault memory controller (VAU)
 - To aggregate between DRAM vaults (EMP)
- "Memory Network" Centric
- Homenode for all addresses
 - Owns the address, data, and its state, "coherency"
- Three Control-Flow Options
 - In the Processor ("Memory is the Accelerator"), conventional
 - In the Memory System ("Processor is the Accelerator"), our approach
 - Both, probably un-programmable
- At 1-2 GHz, 4 EMPs per vault
 - 64 vaults

LINA TOT LINA

2-4K threads per node in the memory system!

Details: Heavyweight Alternatives

Non-Heavyweights

Comparison

Sample Path – Off Module Access

- 1. Check local L1 (miss)
- 2. Go thru TLB to remote L3 (miss)
- 3. Across chip to correct port (thru routing table RAM)
- 4. Off-chip to router chip
- 5. 3 times thru router and out
- 6. Across microprocessor chip to correct DRAM I/F
- 7. Off-chip to get to correct DRAM chip
- 8. Cross DRAM chip to correct array block
- 9. Access DRAM Array
- 10. Return data to correct I/R
- 11. Off-chip to return data to microprocessor
- 12. Across chip to Routre Table
- 13. Across microprocessor to correct I/O port
- 14. Off-chip to correct router chip
- 15. 3 times thru router and out
- 16. Across microprocessor to correct core
- 17. Save in L2, L1 as required
- 18. Into Register File

Relook at Exascale Strawman

Register File Access	0.16
SRAM Access	0.23
DRAM Access	1
On-chip movement	0.0187
Thru Silicon Vias (TSV)	0.011
Chip-to-Board	2
Chip-to-optical	10
Router on-chip	2

<u>Step</u>	Target	<u>p</u> J	#Occurrances	Tot	al pJ	% of Total
Read Alphas	Remote	13,819	4	55	276	16.5%
Read pivot row	Remote	13,819	4	55	276	16.5%
Read 1st Y[i]	Local	1,380	88	121	5	NV 1%
Read Other Y[i]s	L1	39	264	10	2	V <u>%</u>
Write Y's	L1	39	352	13	900	4.2%
Flush Y's	Local	891	88	78	380	23. <mark>4</mark> %
Total			334,056			
Ave per Flop				4	75	

If this is true, 1 EF/s = 0.5 GW!

Access vs Reach

What Does This Tell Us?

- Cannot afford **ANY** memory references
- Many more energy sinks than you think
- Cost of Interconnect *Dominates*
- Must design for on-board or stacked DRAM
- Need to redesign the entire access path:
 - Alternative memory technologies reduce access cost
 - Alternative packaging costs reduce bit movement cost
 - Alternative transport protocols reduce # bits moved
 - Alternative execution models reduce # of movements

AND IT GETS <u>MUCH WORSE</u> FOR CACHE UNFRIENDLY PROBLEMS