(75 University of Pittsburgh

HPCSoC Modeling and
Simulation Implications

(Sharing three “concerns” from an
academic research user perspective
using free, open tools. Solutions left to
the reader. ©)

Bruce Childers
childers@cs.pitt.edu
http://www.cs.pitt.edu/~childers
Dietrich School of Arts and Sciences
Department of Computer

Concern 1: High-level Design Exploration

Degrees of freedom increase
— Custom compute: processor, memory, I0/storage, network
— Software and hardware both can be customized
— Modeling at scale, breadth of choice at scale

1. Increasing the level of abstraction
— Explore more choices in finite time
— More layers & higher abstraction to quickly traverse space
— Multi-layered, multi-fidelity sim & modeling

2. Agent-based optimization (with engineer-in-loop)
— Agents find design neighborhoods directed by engineer goals
— Move up/down between layers — zoom in/out
— Confidence aware

3. Agent “learn” (i.e., models refined)
— Refine higher-level models with lower-level discoveries
— E.g., regression & machine learning models
— Interacts with the sim & models — need interfaces

e

=
analytic
A-—

/ coarse sim

i ;’ detailed sim|

L
physical

9/7/14

Example: Little to Big Core

Example: Refine Model to Predict Another Core Type

1.
2.
3.

Existing little model
Sample actual big

Transform (project) existing projection
model to a new mode

app model app model

Multivariate piece-wise linear regression with projection

——Big Actual —+—Big Predicted —Little Actual = Little Predicted

| big core projected 2

from little core data W

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
core count (parallelization)

performance

Concern 2: Modeling and Simulation of Sys. Software

* Not just the hardware but also the software
— Of course, application models are useful
* At some point in design flow, the models are lowered
enough that we should consider system software as well

— Programming model, Development environment (debugging, testing),
Compiler, OS/runtime

* Supporting role: What is need and cost/disruption to SW
layer for custom hardware? How well does it work?

* First-class citizen: What customizations can be made to the
software layer and how well do they work?

9/7/14

9/7/14

E.g., Compiler

Evaluate an accelerator design possibility

1. Partitioning: divide application between resource types
2. Mapping: assign to specific resources of each type
3. Optimization: transform to best use the type

How “good” is the compiler?
How does the compiler affect the end result (PPR)?

We want to know how well the compiler will do its job without
actually doing it (or implementing), especially in early design!

Modeling the Compiler

2

[e]

i Traces

o0 (Model?)

(%)

[}

©

© >
it App b =
S (Model?) ‘qu 2
5 S £
< Lo (i} 5]
=] Optimization c s
o o

£ Models 5 S
< = 4]
Y Q =
= Arch 5 s
o (Model?) Models £

* Code, Resource models automatically inferred
* Optimization models: Require effort.

* Model-driven Code Optimization (mostly scalar)
— Modeled for profitability for scalar, some locality optimizations
— Used FPO+models to find good opt. sequences (phase orderings)

E.g., OS (Persistent memory, NVM)

* Persistent memory Samsung F2FS
— Flash, PCM, STT-RAM, etc. Optimized for Flash storage

. . . . Sequential writes desired
— Different operation, structure, integration Log-structured file system

Optimization interaction w/FTL

* What about SW implications?

. . <Aged >
— Block device through file system
Items Ext4 F2FS Improv.
— Block device with lightweight layer conaetsyeime | o | a5 | s
— Directly through read/write instructions freeon®)
AP‘(’S‘E"CS;:gS‘)‘"‘e 362 370 2%
. RLBench (seconds) 99.4 85.1 17%
Need models to evaluate: choice, system vl s T s T
. . . . 10Zone With - .
design (disruption), PPR (metrics) At | | | e

Joo-Young Hwang, F2FS: A New File System
Designed for Flash Storage in Mobile,
Embedded Linux Conference, Europe, 2012

Concern 3: Too much Duct Tape

* Complex systems, abstraction, multi-fidelity, multi-
level, composition, big collection of tools & models....

* Do you trust the result??? Really?
* Properties of trust [static & dynamic]

Model assumptions (correct, what is/isn’t assumed)

Bug-free (yea, yea) model implementation

Integration & composition

Performancé@ bug in core
pipeline discovered when
integrated-with power ang

Meaningful composition

* Methods, measures of trustworthiness

9/7/14

Trust

* (My comments reflect an “open” SoC economy.)

* Often “feels” overly ad hoc (ok, random!)
— Favorite frameworks, languages, libraries, tools, etc.
— Side effect of “more important work” (publish or perish!)

* Need more principled, formal & accountable
Good software engineering (a real problem for “free” artifacts)

Documented, reasonably robust implementation
What is and is not modeled, degree of testing

Interfaces, at least some definition, preferred formalism for reasoning
* E.g., Cog was used to build a formally verified compiler! Experts, though...

Computable confidence metric(s) (uncertainty quantification)

The End

9/7/14

