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DRAM-Optimized Near Memory Acceleration 
 Enabling technology: 3D stacked integration 

 Logic and DRAM layers connected by TSVs 
 Better timing, lower area, advanced IO in the logic layer 

 
 
 

 
 
 

 Accelerators in 3D DRAM, behind the conventional interface 
 Bandwidth and latency concerns still exist to off-chip 
 Integration behind conventional interface opens up internal resources 

 
 DRAM operation and organization aware accelerators 

 Conventional near memory computing only aim to reduce the 
communication distance between memory and processor 

 

HMC 

DDR4 DIMMs 
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Concept: Memory-Side Accelerators 

 Idea: Accelerator on DRAM side 
 No off-DIMM data traffic 
 Huge problem sizes possible 
 3D stacking is enabling technology 

 Configurable array of accelerators 
 Domain specific, highly configurable 
 Cover DoD-relevant kernels 
 Configurable on-accelerator routing 

 System CPU 
 Multicore/manycore CPU 
 CPU-side accelerators 
 Explicit memory management 
 SIMD and multicore parallelism 
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Memory-Side Accelerator Architecture 
 DRAM-side Accelerator 
 LiM layer in stacked DRAM 
 Array of acceleration engines 
 Domain specific, highly configurable 

 Customized Acceleration Pipelines 
 DRAM-to-DRAM streaming 
 Connect and configure multiple engines  
 Configurable on-LiM routing 

 Accelerator Cores 
 Reshape: linear-to-block data layout changes 
 Batch FFT: primitive for large 1D and 2D FFTs 
 Resampling: interpolation, geometric transformations, image alignment 
 Feature extraction: edge and shape detection 

 Example: PFA SAR requires Reshape, Batch FFT and Resampling 
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Simulation, Emulation, and Software Stack 
Synopsis 
DesignWare 

McPAT 

 Accelerator Simulation 
 Timing: Synopsis DesignWare 
 Power: DRAMSim2, Cacti, Cacti-3DD 

McPAT 

 Full System Evaluation 
 Run code on real system (Haswell, Xeon Phi) 

or in simulator (SimpleScalar,…) 
 Normal DRAM access for CPU, but  

trap accelerator command memory space,  
invoke simulator 

 API and Software stack 
 Accelerator: memory mapped device with command and data address space 
 User API: C configuration library, standard API where applicable 
 Virtual memory: fixed non-standard logical-to-physical mapping 
 Memory management: Special malloc/free, Linux kernel support 

#include <accelerator-fftw3.h> 
... 
{ 
  fftw_complex *in, *out; 
  fftw_plan p; 
  ... 
  in = (fftw_complex*)  
    fftw_malloc(sizeof(fftw_complex) * N); 
  out = (fftw_complex*)  
    fftw_malloc(sizeof(fftw_complex) * N); 
  p = fftw_plan_dft_1d(N, in, out,  
    FFTW_FORWARD, FFTW_ESTIMATE); 
  ... 
  fftw_execute(p); /* repeat as needed */ 
  ... 
  fftw_destroy_plan(p); 
  fftw_free(in); fftw_free(out); 
} 
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Sparse Matrix Multiplication Accelerator 

Off-chip: SRUMMA (tiled shared memory algorithm) 

On-chip: regular SpGEMM kernel 

DRAM Dies 

LiM  Dies 

Buffer 

LiM 

DRAM 

    

DRAM DRAM 

Scratchpad 
Layer 

DRAM 
Dies 

LiM 
Dies Scratchpad: Hierarchical tiling 

SRAM  
logic-in-memory 

EDRAM 
scratchpad 

DRAM 
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Sparse Matrix-Vector Product Accelerator 

3DIC Memory Side Accelerator Target: Larges Sparse Graphs 

Algorithm SpMV Kernel 

 Block-column multiply + merge step 
 Partial results are streamed to DRAM 
 Matrix streams from DRAM 
 Vector segment is held in scratchpad/EDRAM 

 Standard sparse matrix times dense vector 
 Matrix is very sparse (a few non-zeroes per row) 
 Matrix and vector size is large (>10M x 10M/GB) 
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In-DRAM Reshape Accelerator 

Abstraction: Bit Permutations Reshape Operation 

Traditional System 3DIC Reshape Stack 
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3DIC DRAM + SpGEMM Multicore Design 
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65nm  test chip 

Tape-out is funded under IARPA (PI Pileggi, Co-PIs Fedder, Franchetti, Piazza) 

 Taped out (65nm) 
 Core Area: 1.003 x 1.292 mm2 
 Transistor count > 1M 
 Frequency: 525MHz (SS @ICC) 
 Power: 150mW (@DC) 
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Intel Dual-CPU Intel Xeon E5-2430 system 
 about 140W, 6 DRAM channels, 64 GB/s max, 6 DIMMs (48 chips), 210 GFLOPS peak 
 Intel MKL 11.0 mkl_dcsrmultdcsr (unsorted):  

100 MFLOPS – 1 GFLOPS, 1 – 10 MFLOPS/W 

Our 3DIC System 
 4 DRAM layers@ 2GBit, 1 logic layer, 32nm, 30 – 50 cores, 1GHz, 30 – 50 GFLOPS peak 
 Performance: 10 – 50 GFLOPS @ 668GB/s with 1024 TSV  

Power efficiency: 1 GFLOPS/W @ 350GB/s with 512TSV or 8GB/s with 1024 TSV   
 
 
 
 

SpGEMM: Experimental Results 

Matrices from University of Florida sparse matrix collection 
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3DIC for 2DFFT and PFA SAR 

 3DIC: 8Gbit, 4-layer DRAM + 1-layer logic,  
16 banks/layer, 512 TSV/bank, 1KB pages, 32nm (320GB/s max BW) 

 2DFFT: tiled FFT, tile size matches DRAM row buffers 
 PFA SAR: Polar to rectangular local interpolation with logic-in-memory 

More flops for the same # of accesses 
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Results: DRAM-aware FFT Algorithms 

Performance model and power/performance simulation results 

DRAM-aware FFT algorithms optimized by SPIRAL 
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Near Memory Computing in DARPA PERFECT 
HW/SW Formalization 
SPIRAL System 
Hardware Synthesis 
 
 
 
Software Synthesis 

Algorithm+HW Design 
Memory-Side Accelerators 
3DIC System 
 
 

Accelerator Architecture 

Low Power Accelerator Cores 
Logic-in-memory for sub-22nm CMOS 
Design Tools and Simulation 
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