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DRAM-Optimized Near Memory Acceleration 
 Enabling technology: 3D stacked integration 

 Logic and DRAM layers connected by TSVs 
 Better timing, lower area, advanced IO in the logic layer 

 
 
 

 
 
 

 Accelerators in 3D DRAM, behind the conventional interface 
 Bandwidth and latency concerns still exist to off-chip 
 Integration behind conventional interface opens up internal resources 

 
 DRAM operation and organization aware accelerators 

 Conventional near memory computing only aim to reduce the 
communication distance between memory and processor 

 

HMC 

DDR4 DIMMs 
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Concept: Memory-Side Accelerators 

 Idea: Accelerator on DRAM side 
 No off-DIMM data traffic 
 Huge problem sizes possible 
 3D stacking is enabling technology 

 Configurable array of accelerators 
 Domain specific, highly configurable 
 Cover DoD-relevant kernels 
 Configurable on-accelerator routing 

 System CPU 
 Multicore/manycore CPU 
 CPU-side accelerators 
 Explicit memory management 
 SIMD and multicore parallelism 
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Memory-Side Accelerator Architecture 
 DRAM-side Accelerator 
 LiM layer in stacked DRAM 
 Array of acceleration engines 
 Domain specific, highly configurable 

 Customized Acceleration Pipelines 
 DRAM-to-DRAM streaming 
 Connect and configure multiple engines  
 Configurable on-LiM routing 

 Accelerator Cores 
 Reshape: linear-to-block data layout changes 
 Batch FFT: primitive for large 1D and 2D FFTs 
 Resampling: interpolation, geometric transformations, image alignment 
 Feature extraction: edge and shape detection 

 Example: PFA SAR requires Reshape, Batch FFT and Resampling 
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Simulation, Emulation, and Software Stack 
Synopsis 
DesignWare 

McPAT 

 Accelerator Simulation 
 Timing: Synopsis DesignWare 
 Power: DRAMSim2, Cacti, Cacti-3DD 

McPAT 

 Full System Evaluation 
 Run code on real system (Haswell, Xeon Phi) 

or in simulator (SimpleScalar,…) 
 Normal DRAM access for CPU, but  

trap accelerator command memory space,  
invoke simulator 

 API and Software stack 
 Accelerator: memory mapped device with command and data address space 
 User API: C configuration library, standard API where applicable 
 Virtual memory: fixed non-standard logical-to-physical mapping 
 Memory management: Special malloc/free, Linux kernel support 

#include <accelerator-fftw3.h> 
... 
{ 
  fftw_complex *in, *out; 
  fftw_plan p; 
  ... 
  in = (fftw_complex*)  
    fftw_malloc(sizeof(fftw_complex) * N); 
  out = (fftw_complex*)  
    fftw_malloc(sizeof(fftw_complex) * N); 
  p = fftw_plan_dft_1d(N, in, out,  
    FFTW_FORWARD, FFTW_ESTIMATE); 
  ... 
  fftw_execute(p); /* repeat as needed */ 
  ... 
  fftw_destroy_plan(p); 
  fftw_free(in); fftw_free(out); 
} 
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Sparse Matrix Multiplication Accelerator 

Off-chip: SRUMMA (tiled shared memory algorithm) 

On-chip: regular SpGEMM kernel 
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Sparse Matrix-Vector Product Accelerator 

3DIC Memory Side Accelerator Target: Larges Sparse Graphs 

Algorithm SpMV Kernel 

 Block-column multiply + merge step 
 Partial results are streamed to DRAM 
 Matrix streams from DRAM 
 Vector segment is held in scratchpad/EDRAM 

 Standard sparse matrix times dense vector 
 Matrix is very sparse (a few non-zeroes per row) 
 Matrix and vector size is large (>10M x 10M/GB) 
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In-DRAM Reshape Accelerator 

Abstraction: Bit Permutations Reshape Operation 

Traditional System 3DIC Reshape Stack 
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3DIC DRAM + SpGEMM Multicore Design 
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65nm  test chip 

Tape-out is funded under IARPA (PI Pileggi, Co-PIs Fedder, Franchetti, Piazza) 

 Taped out (65nm) 
 Core Area: 1.003 x 1.292 mm2 
 Transistor count > 1M 
 Frequency: 525MHz (SS @ICC) 
 Power: 150mW (@DC) 
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Intel Dual-CPU Intel Xeon E5-2430 system 
 about 140W, 6 DRAM channels, 64 GB/s max, 6 DIMMs (48 chips), 210 GFLOPS peak 
 Intel MKL 11.0 mkl_dcsrmultdcsr (unsorted):  

100 MFLOPS – 1 GFLOPS, 1 – 10 MFLOPS/W 

Our 3DIC System 
 4 DRAM layers@ 2GBit, 1 logic layer, 32nm, 30 – 50 cores, 1GHz, 30 – 50 GFLOPS peak 
 Performance: 10 – 50 GFLOPS @ 668GB/s with 1024 TSV  

Power efficiency: 1 GFLOPS/W @ 350GB/s with 512TSV or 8GB/s with 1024 TSV   
 
 
 
 

SpGEMM: Experimental Results 

Matrices from University of Florida sparse matrix collection 
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3DIC for 2DFFT and PFA SAR 

 3DIC: 8Gbit, 4-layer DRAM + 1-layer logic,  
16 banks/layer, 512 TSV/bank, 1KB pages, 32nm (320GB/s max BW) 

 2DFFT: tiled FFT, tile size matches DRAM row buffers 
 PFA SAR: Polar to rectangular local interpolation with logic-in-memory 

More flops for the same # of accesses 
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Results: DRAM-aware FFT Algorithms 

Performance model and power/performance simulation results 

DRAM-aware FFT algorithms optimized by SPIRAL 
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Near Memory Computing in DARPA PERFECT 
HW/SW Formalization 
SPIRAL System 
Hardware Synthesis 
 
 
 
Software Synthesis 

Algorithm+HW Design 
Memory-Side Accelerators 
3DIC System 
 
 

Accelerator Architecture 

Low Power Accelerator Cores 
Logic-in-memory for sub-22nm CMOS 
Design Tools and Simulation 
 

75  
GFLOPS/W 
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