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Everything Has A Computer Inside
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The Reason is Simple:
Moore’s Law Made Gates Cheap
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Dennard’s Scaling 
Made Them Fast & Low Energy

The triple play:
• Get more gates, 1/L2 1/2

• Gates get faster, CV/i 
• Energy per switch CV2 3

Dennard, JSSC, pp. 256-268, Oct. 1974



Our Expectation

Cray-1: world’s fastest computer 1976-1982
• 64Mb memory (50ns cycle time)
• 40Kb register (6ns cycle time)
• ~1 million gates (4/5 input NAND)
• 80MHz clock
• 115kW

In 45nm (30 years later)
• < 3 mm2

• > 1 GHz
• ~ 1 W
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CRAY-1



Supporting Evidence
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http://cpudb.stanford.edu/



Houston, We Have A Problem
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http://cpudb.stanford.edu/



The Power Limit
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http://cpudb.stanford.edu/
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Power Increased Because We Were Greedy

10x too large

Clever

http://cpudb.stanford.edu/



This Power Problem Is Not Going Away:
P = C * Vdd2 * f
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http://cpudb.stanford.edu/

L0.6



Think About It
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Technology to the Rescue?
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Problems w/ Replacing CMOS

Pretty fundamental physics
• Avoiding this problem will be hard

Its capability is pretty amazing
• fJ/gate, 10ps delays, 109 working devices
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Catch - 22
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The Truth About Innovation
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Start by creating new markets



Our CMOS Future

Will see tremendous innovative uses of computation
• Capability of today’s technology is incredible
• Can add computing and communication for nearly $0
• Key questions are what problems need to be solved?

Most performance system will be energy limited
• These systems will be optimized for energy efficiency

Power = Energy/Op * Ops/sec
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Processor Energy – Delay Trade-off

17http://cpudb.stanford.edu/



The Rise of Multi-Core Processors

18http://cpudb.stanford.edu/



The Stagnation of Multi-Core Processors

19http://cpudb.stanford.edu/



Aside:
Throughput Optimized FP



Aside: Floating Point Optimization
180nm – ITRS 10nm
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Have A Shiny Ball, Now What?
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Signal Processing ASICs
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Markovic, EE292 Class, Stanford, 2013



The Push For Specialized Hardware
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Before Talking About Specialization
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Don’t Forget Memory System Energy
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Processor Energy w/ Corrected Cache Sizes
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Processor Energy Breakdown
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Data Center Energy Specs
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Malladi, ISCA, 2012
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What Is Going On Here?
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ASIC’s Dirty Little Secret

All the ASIC applications have absurd locality
• And work on short integer data

32

Inter 
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CABAC 
Entropy 
Encoder

Video 
Frames

Compressed 
Bit Stream

Integer 
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Fractional 
Motion 

Estimation

90% of Execution time is here

H.264

Hamid et al, ISCA, 2010



Rough Energy Numbers (45nm)
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Integer
Add

8 bit 0.03pJ
32 bit 0.1pJ

Mult
8 bit 0.2pJ
32 bit 3 pJ

FP
FAdd

16 bit 0.4pJ
32 bit 0.9pJ

FMult
16 bit 1pJ
32 bit 4pJ

Memory
Cache (64bit)

8KB 10pJ
32KB 20pJ
1MB 100pJ

DRAM 1.3-2.6nJ

70 pJ

I-Cache Access Register File
Access

25pJ 6pJ Control

Instruction Energy Breakdown

Add



The Truth:
It’s More About the Algorithm then the Hardware
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All Algorithms

GPU Alg



35



Highly Local Computation Model
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Highly Local Computation Model
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Highly Local Computation Model
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Highly Local Computation Model
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Compose These Cores into a Pipeline

Program in space, not time
• Makes building programmable hardware more difficult



Working on System to Explore This Space

Takes high-level program
• Graph of stencil kernels

Maps to hardware level assembly
• Compute graph of operations for each kernel

Currently we map the result to:
• FPGA, custom ASIC
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Enabling Innovation

You don’t just compile applications to efficiency
• Need to tweak the application to fit constraints

Need to enable application experts to play
• They know how to “cheat” and still get good results
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Remember This Trade-off?
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Need to reduce cost to play
• Building constructors, not instances

http://genesis2.stanford.edu/



Chip Constructor Idea

Simulator

p

Per 
application 
parameters

Performance Power Usage

Generator 
+Optimizer

Software

RTL, Verif Collateral, Firmware

http://genesis2.stanford.edu/



Not All Systems Are On The Bleeding Edge
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App Store For Hardware
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Challenge
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A New Hope

If technology is scaling more slowly
• We can incorporate current design knowledge into tools
• To create extensible system constructors

If killer products are going to be application driven
• Application experts need to design them

We can leverage the 1st bullet to enable the 2nd

• To usher in a new wave of innovative computing products
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