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e Synchronous Vvs. Asynchronous Systems?

% Synchronous Systems: use a global clock
% entire system operates at fixed-rate
% Uses “centralized control”
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e Synchronous vs. Asynchronous Systems? (cont.)

% Asynchronous Systems: no global clock

% components can operate at varying rates
s communicate locally via “handshaking”
% uses “distributed control”
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Overview: Asynchronous Communication

Components usually communicate & synchronize on channels

Sender Receiver

synchronization: without data




Communication channel: usually instantiated as 2 wires

Sender Receiver

synchronization: without data




Sender

Receiver

One transaction (return-to-zero [RZ]):
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Return-to-zero (RZ) phase

4-Phase Handshaking

Two transactions (non-return-to-zero [NRZ]):

First transaction
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Second transaction

2-Phase Handshaking

synchronization: without data




Overview: How to Communicate Data?

Data channel: replace “req” by (encoded) data bits
- ... still use 2-phase or 4-phase protocol

data

O

Receiver




| “dual-rail” (4-phase [RZ]) | “single-rail bundled data”
(4-phase [RZ])

dual-rail
bit encoding

X1 X0 Uses single-rail data “bundle”
(i.e. synchronous style) +
01 worst-case delay (bundling signal)
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Dual-rail = delay-insensitive (DI) codes _
(alternatives: 1-of-4, m-of-n, ...) S/ng/e rail "bundled data




Asynchronous Design: Potential Benefits

Lower Power
% NOo_clock
% =» components inherently use dynamic power only “on demand”

# =» o global clock distribution
# =» effectively provides automatic clock gating at arbitrary granularity

Robustness, Scalability, Modularity: “Lego-like™ construction
% nNo_global timing: plug-and-play design
* =» “mix-and-match” variable-speed components, different block sizes
# =» supports dynamic voltage scaling

# modular design style =» “object-oriented”

Higher Performance (... sometimes)
% not limited to “worst-case” clock rate

“Demand- (Data-) Driven” Operation
# instantaneous wake-up from standby mode




Potential Targets

L.arge variety of asynchronous design styles
# Address different points in “design-space” spectrum...

% extreme timing-robustness:
% supports unknown transmission times, arbitrary inter-bit skews
» PVT variation tolerant: providing near “delay-insensitive (DI)” operation

% Ultra-low power, energy:
# “on-demand” operation, instant wakeup
% Sub-/near-threshold benefits: J. Rabaey, K. Roy, S. Nowick/M.Seok

¥ ease-of—design/moderate performance/low EMI (electro-magnetic interference)
% e.g. goal at Philips Semiconductors

# very high-speed: asynchronous pipelined systems

# ... comparable throughput to high-end synchronous design
% with added benefits: lower system latency, support variable I/O rates

% modular heterogeneous systems: integrate clock domains via async
# “GALS-style” (globally-async/locally-sync)

# Use in emerging technologies: QCA, CNT, wireless, photonic/digital, etc.
#10




A Brief History..:

Phase #1: Early Years (1950s-1960°s)

% |Leading processors: Illiac, Illiac II (U. of Illinois), Atlas, MU-5 (U. of Manchester)

% Macromodules Project: plug-and-play design (Washington U., Wes Clark/C. Molnar)
# Commercial graphics/flight simulation systems: LDS-1 (Evans & Sutherland, C. Seitz)
b

Basic theory, controllers: Unger, McCluskey, Muller

Phase #2: The Quiet Years [VLSI epoch] (1970°’s-mid 1980's)

% VLSI success: leads to synchronous domination and major advances

Phase #3: Coming of Age (late 1980’s to 2000)

% Re-inventing the field:
# correct new methodologies, controllers, high-speed pipelines, basic CAD tools
# Initial industrial uptake: Philips Semiconductors products, Intel/IBM projects

# First microprocessors: Caltech, Manchester Amulet [ARM]

Phase #4: The Modern Era (early 2000's-present)

% Leading applications, commercialization, tool development, demonstrators
#11




1. Philips Semiconductors: low-/moderate-speed embedded systems

% Wide commercial use: 700 million async chips (mostly 80c51 microcontrollers)

# consumer electronics: pagers, cell phones, smart cards, digital passports, automotive
% commercial releases: 1990's-2000’s

% Benefits (vs. sync):
# 3-4x lower power (and lower energy consumption/op)
# 5x lower peak currents

# much lower “electromagnetic interference” (EMI) — no shielding of analog components
# Correct operation over wide supply voltage range
# instant startup from stand-by mode (no PLL" s)

% Complete commercial CAD tool flow: synthesis, testing, design-space exploration

# “Tangram’: Philips (late 1980° s to early 2000 s)
# Haste”: Handshake Solutions (incubated spinoff, early to late 2000’s)




1. Philips Semiconductors (cont.)

# Synthesis strategy: syntax-directed compilation
# Starting point; concurrent HDL (Tangram, Haste)
» 2-step synthesis:
# front-end: HDL spec => intermediate netlist of concurrent components

» back-end: each component => standard cell (... then physical design)
# Integrated flow with Synopsys/Cadence/Magma tools

% +. fast, ‘transparent’, easy-to-use
% - few optimizations, low/moderate-performance only

Asynchronous 80c51:
5x lower current peaks [Philips, 2000%*] it i 1 )
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Figure 3. Current peaks of 80C51 micro-controller

*J. Kessels, T. Kramer, 6. den Besten, A Peeters, and V. Timm,
"Applying Asynchronous Circuits in Contactless Smart Cards,” IEEE Async-Symposium (2000)




2. Fulcrum Microsystems/Intel: high-speed Ethernet switch chips
» Async start-up out of Caltech = now Intel’s Switch & Router Division (SRD) (2011)

% Target: low system latency, extreme functional flexibility

% Alta Chip: Intel’s FEM5000-6000 Series (~2013 release)
% /2-port 10G Ethernet switch/router
# Very low cut-through latency: 400-600ns
# 90% asynchronous - external synchronous interfaces
# 1.2 billion transistors: largest async chip ever manufactured (at release time)
« > 1 GHz asynchronous performance (65 nm TSMC process)
CAD flow: semi-automated, including spec language (CAST)

*M. Davies, A. Lines, J. Dama, A. Gravel, R. Southworth, 6. Dimou
and P. Beerel, "A 72-Port 106 Ethernet Switch/Router Using
Quasi-Delay-Insensitive Asynchronous Design,”

IEEE Async-Symposium (2000)




3. Neuromorphic Chips: IBM’s "TrueNorth” (Aug. 2014)

= Developed out of DARPA’s SyNAPSE Program
% Massively-parallel, fine-grained neuromorphic chip
% Fully-asynchronous chip! = neuronal computation (bundled data) + interconnect (DI)

# IBM’s largest chip ever: 5.4 billion transistors
Models 1 million neurons/256 million synapses =» contains 4096 neurosynaptic cores

#* ... MANY-CORE SYSTEM!

s

Extreme low energy: 70 mW for real-time operation = 46 billion synaptic ops/sec/W
= Asynchronous motivation: extreme scale, high connectivity, power requirements,
tolerance to variability

Example network topology:
showing only 64 cores (out of 4096)

[IBM, 2014%*]

*P.A. Merolla, J.V. Arthur, et al.,
"A Million Spiking-Neuron Integrated Circuit with a Scalable

Communication Network and Interface,” Science, vol, 345,
pp. 668-673 (Aug. 2014) [COVER STORY]




3. Neuromorphic Chips: Other Recent Asynchronous Designs

a. U. of Manchester (UK): SpiNNaker Project, ~2005-present (S. Furber et al.)

b. Stanford: “Neurogrid” (Brains in Silicon) (K. Boahen et al.)

# Scientific American (May 2005) — cover story
# Proceedings of the IEEE (May 2014)

=» Each uses robust async NoC's to integrate massively-parallel many-core system




Designing a Low-Power and Low-Latency
NoC Switch Architecture for
Cost-Effective GALS Multicore Systems
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in Europe Conference (DATE-13)]
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State of the Art

MPSoCs increasingly structured as multiple voltage/frequency
islands, making their system interconnect challenging

Examples of heterogeneous MPSoCs with multiple clock d

omains.
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State of the Art

MPSoCs increasingly structured as multiple voltage/frequency
islands, making their system interconnect challenging

Examples of heterogeneous MPSoCs with multiple clock domains:
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Alternative approaches to connect multi-synchronous systems:
unmistakable trend towards relaxation of global synchronization
assumptions in nanoscale MPSoCs
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State of the Art

MPSoCs increasingly structured as multiple voltage/frequency
islands, making their system interconnect challenging

Examples of heterogeneous MPSoCs with multiple clock domains:
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unmistakable trend towards relaxation of global synchronization
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Clockless handshaking for inter-domain communication holds promise of:
— average-case performance (instead of worst-case)
— no switching power of a clock tree/no clock gating management
— robustness to PVT variations
— efficient delivery of differentiated per-link performance




Challenges

However, the potential benefits of asynchronous design
paradigm are not reflected into the actual industrial uptake.

There are two fundamental barriers:

]

e Poor CAD tool support =2
— Full-custom approach ) || :é (=

— Rigid hard macrocells { .

M Synch ® Asynch (normalized)

* Overly large area and

Appl. Tot. Power

energy-per-bit overhead Energy per flit

— Delay-insensitive (DI) data encodings Flit Throughput

Area

— Power savings come mainly from

—
S

— Four-phase return-to-zero (RZ) protocols idle Power [f
L
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0 1 4

reduction of idle power, not energy per bit )




Objectives

Full 5-ported asynchronous switch
designed with transition-signaling bundled data protocol

Our goal: a switch architecture that outperforms = ==
its synchronous counterpart in terms of:
— energy-per-bit
— power consumption
— area footprint -

Performance e
Energy

... While obtaining comparable or better performance e

» we compare to an ultra-low complexity synch
NoC as baseline

o makes this objective even more challenging!

Our goal: be fully compatible with a standard cell
design methodology and a mainstream
CAD tool flow for synchronous design
— Partially relaxing the hard macro requirement 5




Detailed Contributions

Extend state-of-the-art routing and arbitration primitives to a full 5-ported switch

Two-phase protocol and bundled data encoding in both link and switch

High performance (>900 Mflit/s) in low-power standard-Vth 40nm technology

Semi-automated designh flow

— exploits mainstream tools for synchronous design
— generates partially-reconfigurable standard cell macros

Comparison of post-layout designs

— new asynchronous switch
— ultra-lightweight synchronous switch architecture (xpipesLite)

Link parasitic effects considered during analysis




Target Switch Architecture
* Features:

o 5input and 5 output ports
 suitable for 2D mesh topology

o Parameterizable flit width
* E.g., 32 bits
o Wormbhole switching

o Logic-based distributed routing

* algorithmic routing

Input Port ° .
s Based on:

. = Arbitration and Routing primitives! —

utput Port , _ . i

| Module simple 1:2 routing and 2:1 arbitration
primitives for Mesh-of-Trees network

1. M.N. Horak, S.M. Nowick et. al., “A low-overhead e |ns pIr ed by (and benchmarked against).
asynchronous interconnection network for GALS chip
multiprocessors”, 1EEE Trans. on CAD, vol. 30:4, April 2011 m Xpipesl_itez _ ultra_low CompleX|ty

2. S.Stergiou et al., “xpipesLite: a synthesis-oriented design flow Sy NC h ronous N OC SW|tC h
for networks on chip”, DATE 2005 7




Switch Architecture
Input Port Module (IPM)
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Switch Architecture
Output Port Module (OPM)

From the associated
Input Port Module
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OPM: arbitrates between multiple incoming requests trying to access a single associategd

output channel.




Design Flow

 Bundled-data protocol requires: Entry

= Relative constraints between paths Level

» correct operation

= Absolute constraints

: Logic
» increase performance Synthesis
* These constraints have been
enforced across all steps .
— from logical synthesis to layout Physical
Switch
* Design methodology Design

— use mainstream CAD tools in semi-
automated design methodology | |nter-Switch | Inter-Switch
Non-Pipelined Pipelined
Links Links



Experimental Setup and Results



Synch vs. Asynch:
Comparative Analysis

3.7x

m Asynchronous

Different buffering
requirements
between the two

m Synchronous

implementations

Normalized wrt

Synchronous
Design

Area Cycle Time (Avg.)  Area efficiency
Delivered Throughput |M fps]
Area Occupancy mm?

Area efficiency:
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Synch vs. Asynch:
Detailed Area Comparison

18000 1 GHz
16000
14000
™ Datapath
12000 |
- 500 MHz M Arbiter
£ 10000
= ] M Phase Converters
& 8000 e
= “ Routing Logic
6000 800 MHz M Qutput Buffer
4000 - ¥ Input Buffer
2000 -
0 - —Key Differences:

Asynch. HP  Synch. HP  Asynch. LA  Synch. LA Input /Output Ports:

- Async: 1Single Latch Register

\ J \ J - Sync: 2_FF-Based Registers +
A { A { circular counters + flow control logic

High Performance Synthesis Low Area Synthesis

- Async Flow Control: implicitly supported by handshaking protocel
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Synch vs. Asynch:

Non-ldeal NoC Link Effect

Asynchronous
latency

«@~cycle time

=2=switch + link traversal
=®=clock cycle

Synchronous
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Synch vs. Asynch:
Non-ldeal NoC Link Effect

Asynchronous
latency

«@=cycle time

=2=switch + link traversal
=®-clock cycle

Synchronous

Omm 1mm 2mm 3mm 4mm 5mm 6mm

Synchronous switch: stable performance up to 4mm link length, then increase cycle time.
» 1 entire clock cycle reserved for link traversal.

Asynchronous switch: performance gracefully deqgrades with increasing link length.

* Latency always lower, cycle time has steeper increase due to handshaking protocol. o
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Synch vs. Asynch:

Pipelined NoC Link Effect

(maintaining a given throughput)

Asynchronous

latency

«@~cycle time
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=®=clock cycle
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Synch vs. Asynch:
Pipelined NoC Link Effect

(maintaining a given throughput)

4000
3500
3000
oy Asynchronous
& 2500 latency
()
£ 2000 “B=cycle time
-
= \\i i
1500 switch + link traversal
“®=clock cycle
— e — e — e— ——= ]
Synchronous
500
0

Omm 1Imm 2mm 3mm 4mm 5mm 6mm

Implications of link pipelining completely different for 2 design styles:
* Synchronous design: a pipeline always requires one additional clock cycle of latency.
* Asynchronous design: a pipeline stage adds only a few gate delays. Y




Power Consumption (mW)
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Total Power Consumption

Leakage
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Hotspot
Traffic Pattern

Parallel
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Power Consumption (mW)
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|| without clk-gating / with clk-gating

Synch vs. Asynch:
Total Power Consumption
-60%

Avg. improvement vs. synchronous:

-85%

Leakage Idle Hotspot Parallel
Traffic Pattern

19



Synch vs. Asynch:
Total Power Consumption
-60%

25.00
Avg. improvement vs. synchronous:
| wi P 5 .
__ 20.00 - without clk-gating / with clk-gating
=
E -85% = 3 flits
S 15.00 -
s "<l g fits
o
g i 3 flits
2 10.00 1 ch.
S M 8 flits
(@)
'g . ;3ﬂits
5.00
2 8 flits
IR )
0.00

Leakage Idle Hotspot Parallel
Traffic Pattern

Asynchronous switch reduces idle power consumption even when compared with
clock gating techniques - entirely removes clock.

Asynchronous design has significant dynamic power reduction for every traffic
pattern considered.
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Synch vs. Asynch:
Energy per flit

avg. async improvement:
5.00 - vs. synchronous with clk-gating = 44%

4.50 -
4.00 -
3.50 -
3.00 -
2.50 -
2.00 -
1.50
1.00 -
0.50 -
0.00 -

Energy per flit (pJ)

3 flits 8 flits 3 flits 8 flits 3 flits 8 flits
Asynchronous Synchronous Clock Gating

Power savings not only come from idle power (demand-driven operation), but also
from reduced energy-per-flit (due to its lower complexity and footprint).

L1



Conclusions

Target a largely unexplored design point in async NoC switch architectures

 Uses transition-signaling (2-phase) protocol + single-rail bundled data
— low overhead design

meets performance of synchronous counterparts

* Post-layout comparison with synchronous counterpart:

area: 71% reduction

idle power: 90% reduction

energy-per-flit: 45% reduction
throughput: comparable

latency: lower up to link lengths of 2.5mm
overall area efficiency: 3.7x improvement

* Timing closure achieved through a semi-automatic design flow relying on
mainstream synchronous CAD tools = still more work to be done.

e Finally, the switch is delivered as a partially-reconfigurable standard cell
macro for hierarchical design flows.




