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Motivation 

Box, G. E. P., and Draper, N. R., (1987), Empirical Model 
Building and Response Surfaces, John Wiley & Sons, 

New York, NY.  

“Remember that all models are wrong; the practical 
question is how wrong do they have to be to not be useful.”  

 
George E. P. Box, 2011 

George E. P. Box, 2011 
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Simulation Infrastructure Challenges 
n Scalability 

n Processors are parallel and tools are not 
à not sustainable 

n Multi-disciplinary 
n Functional + Timing + Physical models 

n Need to model complete systems 
n Cores, networks, memories, software at 

scale 

n Islands of expertise 
n Ability to integrate point tools à best of 

breed models 

n Composability 
n Easily construct the simulator you need 
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 Needs and Capabilities 

Modeling 
n Performance models of 
complex phenomena 

n Abstract behaviors of 
interest 

n Draw upon a palette of 
mathematical and simulation 
techniques 

Engineering 
n Construction of software or 
hardware implementations 

n Modularity, composition, 
interoperability 

n Practical determinant of 
ease of use 

4 

Need to distinguish between modeling and engineering 
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Challenge 

5 

 Composition 

Application  Microarchitecture Physical Behaviors 

Common APIs! 
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Example: Thermal Coupling 

6 

n Significant rise in temperature of the idle 
component due to thermal coupling and pollution 

n CPU cores consume thermal headroom more 
rapidly (4X faster) 

n Better management for significant gains in 
measured energy efficiency are possible 

n Power management ≠ thermal management 

Temperature on Core 2 when Core 3 is busy and remaining cores are idle 

0 1 2 3 

I. Paul, et.al., “Cooperative boosting: needy versus greedy power management”, ISCA 2013. 

I. Paul and A. Vanderheyden 
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Performance Improvements: Cooperative Boosting 
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Manifold: Execution Model (Socket/Blade) 
n Full-system simulation 

n Parallel Simulation 

n  Integrated Physical 
Models 

n Hybrid timing model 

n Multiscale  

n Component-based 
design 
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application 
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Parallel Simulation 

Parallel Simulation Kernel (PSK) 

Events 

Events 

Simulation 
Kernel  

Send events Deliver events 

event_handler(T*) 

Inter-LP events 

send(data*) 

Common APIs! 
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A Manifold Socket/Blade Simulation 
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n Composition of application models (full emulation to 
skeletal), timing models, and physical models 
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Processor Representation 
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Processor Package!

Die Partitions!
(Floor-planning)!
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Architecture /!
Circuit Blocks!
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Intermediate Component !
(i.e., core, tile, etc.)!
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Example: Workload Cooling Co-Design 
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Nehalem-like, OoO cores;    
3GHz, 1.0V, max temp 100◦C      
DL1: 128KB, 4096 sets, 64B 
IL1: 32KB, 256 sets, 32B, 4 cycles;     

L2 & Network Cache Layer: 
L2 (per core): 2MB, 4096 sets, 
128B, 35 cycles; 
DRAM: 1GB, 50ns access time (for 
performance model) 

Ambient:  
Temperature: 300K 

•  Thermal Grids: 50x50 
•  Sampling Period: 1us 
•  Steady-State Analysis 

2.1mm x 2.1mm	


8.4mm x 8.4mm	


16 symmetric cores	

L2 L2 L2L2

L2 L2 L2L2

L2 L2 L2L2
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  mm
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H. Xiao, Z. Min, S. Yalamanchili and Y. Joshi, “Leakage Power Characterization and Minimization over 3D Stacked Multi-core Chip with 
Microfluidic Cooling,” IEEE Symposium on Thermal Measurement, Modeling, and Management (SEMITHERM), March 2014 

  DP (um) PS (um) HP (um) 

baseline 100 200 200 
optimized 180 320 400 

DP: diameter, PS: pitch spacing, HP: height 
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Architecture Performance: Example   

0 
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Normalized EPI comparison among all 
4 pin fin structures 

§  Results from an example 
simulation 

§  Optimized pin fin structure  
§  Energy Per Instruction  (EPI) 

40% over the worst case. 

12 

Courtesy L. Zheng (ECE) and Professor Muhannad Bakir (ECE) 
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1.  N.	
  Almoosa,	
  W.	
  Song,	
  S.	
  Yalamanchili,	
  and	
  Y.	
  Wardi,	
  “Throughput	
  Regula>on	
  in	
  Mul>core	
  Processors	
  
via	
  IPA,”	
  CDC,	
  2012.	
  

2.  N.	
  Almoosa,	
  W.	
  Song,	
  S.	
  Yalamanchili,	
  and	
  Y.	
  Wardi,	
  “A	
  Power	
  Capping	
  Controller	
  for	
  Mul>core	
  
Processors,”	
  ACC,	
  2012.	
  

Example: Adaptive Regulation 

� Adap7ve	
  control	
  algorithms	
  u7lize	
  the	
  DVFS	
  capability	
  of	
  
microprocessors	
  to	
  regulate	
  power,	
  thermal,	
  or	
  throughput	
  to	
  
constant	
  level.	
  

� Energy	
  Introspector	
  provides	
  an	
  
interface	
  to	
  apply	
  dynamic	
  
execu7on	
  controls,	
  e.g.,	
  DVFS.	
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Scaling Simulations: Fidelity vs. Scale 
n Composition 

n Common APIs! – sharing IP models 
n Separation of time, event, and synchronization management 

n Hierarchy of fidelity 
n Example: Application skeletons, state machines 

n Parallelism 
n Simulation capacity scales with compute capacity 
n Track Moore’s Law? 

n Integrated Physical Models 

n Need to support Co-Design 
n Power delivery and package design 
n Every Joule counts! 

14 
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Summary  

15 
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www.manifold.gatech.edu 
n Composable simulation infrastructure for constructing multicore 
simulators 
n Common APIs 
n Parallel execution 
n  Integrated physical models 

n Provide base library of components to build useful simulators 
n Distribute some stock simulators 
n Need: Validation Techniques 

15 
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Thank You	


Questions?	


	






