Unclassified Unlimited Release SAND2015-9079C

Sandia
Exceptional service in the national interest National
Laboratories

SoC4HPC — An On-Ramp for Applications at Exascale?

S.D. Hammond
sdhammo@sandia.gov

Scalable Computer Architectures
Center for Computing Research
Sandia National Laboratories, NM, USA

¥4 US DEPARTMENT OF
g :‘7\,: ENERGY ;"JA!&V&“ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
A e et vty Ao Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Mini-Overview of Sandia) .

= National Laboratory with sites in across the
country (DOE, DoD, Industry etc)

= Part of the NNSA Trilab complex associated
with ensuring safety of the nations nuclear
arsenal (Sandia focused on engineering)

= We do much more
= Leadership in wide range of engineering
= Supports complex data analytics research
= Renewable energy
= Partnerships with industry
= Systems for space/satellites/hostiles
= Strong mathematics research
= Quantum computing and novel devices

= All supported by broad HPC requirements

What is the Scale of Our Applicaﬁon@%‘*

_ . . Sandia
Several Sandia Engineering Mathematics /

Applications Solvers TPL

B C++

BC

B Fortran 77
B Fortran 90
B Python

B Other

O CuUDA

O Build System

~11.6M Application Lines of Code ~4.2M Lines of Code
(Several Applications, Much Shared) (Very Large Proportion Shared)

>50 Third Party Libraries

This is just a small part of our application portfolio https://github.com/trilinos/trilinos

This is lines of code, does not include comments, white space, documentation etc, no meshing, viz, analysis etc

Typical Single Physics Research Code@%‘“

Sandia

NALU Trinity Campaign Code Mathematics /
Solvers TPL

B C++

BC

® Fortran 77
® Fortran 90
B Python

8 Other

O CUDA

O Build System

~65K Application Lines of Code ~4.2M Lines of Code
>5 Third Party Libraries (Very Large Proportion Shared)
https://github.com/spdomin/Nalu https://github.com/trilinos/trilinos

National

Challenges) i,

* The size and complexity of these codes is a significant
challenge (multiple millions of SLOC)

= Complexity is very high, written by world class specialists in their field

= Some of algorithms and techniques are not well documented in
literature

= Some of the code is old, well trusted
= Analysts demand high reproducibility

= Varied problem scales and processor cores
= Depends on use cases
= Creates pressure to optimize for weak and strong scaling

= Challenging to move the code base to new architectures
quickly, easily and accurately

= Need to do so in order to cope with demands from users

Instruction Family Breakdown

100%

80% -

60% -

40% -

Instructions Executed

20%

0% -
KRIPKE PENNANT HPCG XSBench LULESH

Sandia
1 National
Laboratories

Logical

® Branching

® Mask Handling
Scatter

® Gather

® Data Move
Vector FMA

®AVX-512

®AVX-Std

—

Codes compiled for KNL with MiniMPI, Intel 15.1 Compiler, AVX512-MIC Optimization, No Code Optimization Applied,

Instructions show for OMP_NUM_THREADS=1

Sandia
1 National
Laboratories

“Wow, Aren’t you Guys Screwed?”

= Personal opinion — no, in fact, we’re making Mﬁ’mHAPPY
{]

9 Bogr lianigreduicn

huge progress but this is hard

= |Internal adoption of the Kokkos Programming
Model giving us ability:
= Abstract parallel execution dispatch
= Abstract data access patterns and allocations

= Retarget code for execution at compile time
(including multiple backends in a single

application)
= Proven record of delivering prototypes across KEEP
multi-core, many-core and GPU devices CALM
AND
= POWERS, Xeon Phi (KNC and KNL), Xeon, NVIDIA BANG YOUR HEAD
and recent prototypes on AMD AGAINST THE WALL

— https://github.com/kokkos/kokkos, Work with H.C. Edwards and C.R. Trott P

Kokkos SNL/ASC Study L2 FY15 T

LULESH Figure of Merit Results (Problem 60)

Better 14000
12000

BHSW 1x16 OHSW 1x32 OP8 1x40 XL BKNC 1x224 U ARM64 1x8 BNV K40

FOM (Z/s)
N A OO O

8888

——

o

. =

b, =

ﬁ

—

I

1

— sl

—

@ Q XS O N N 9 2
‘\Q\Q ®°® 0(\ Q)(b% \) Cjz \YQ~ OQ\ OQ\ OQ\
O K R ¥ 6* F K ¥ ¥
§ & & T N & v E ok
< &
IE RN

Results by Dennis Dinge, Christian Trott and Si Hammond

“So Why SoC”? 5.

= Code abstraction opens up even more opportunities
= Much of our mathematics kernels are abstracted (at some level)

= Particular complex solvers which are key to our application scaling and
performance

= |ots of data structures (meshes) are abstracted at some level

= Means we can look for opportunities to accelerate our most
important kernels with:
= Better hardware?
= More specific fixed-function accelerators (e.g. SoC?)
= Better software/runtime support

= Huge potential for impact in performance & energy
efficiency

What Do We Need?) S,

= Abstractions still need exposure to hardware at the lowest
level and are incredibly hard to get right
= Can we utilize some of our existing interfaces?
= System software/runtimes have a huge role to play here
= Compilers can transform the code for SoC?
= Mapping to libraries?
= Want to explore keeping changes to applications to a
minimum
= Requires us to make decisions about what can accelerate our

application portfolio the best (Sandia will often answer iterative
solvers but there is a more spectrum here)

= Look for commonalities across our workflow (at SNL and other labs)
= |eads to mathematics primitives?

GETTING STARTED WITH SOC IN HPC

Fixed function acceleration for basic primitives

Motivating Context) 5.

= Motivating Use Case: MiniFE CG Solve

= Simplistic but represents kernels which are important to ASC
application portfolio at Sandia

* Dominated (in time) by Sparse Matrix-Vector Products
"= Heavily memory bound, saturate memory sub-system quickly

= |nsufficient balance in processor to meet all the demands of
the cores

= Dual-socket Ivy Bridge XC30, 2.4GHz, 12-cores/socket
= QOptimized libraries, Intel 15.2.164 compiler, AVX-enabled

MiniFE Simple CG Solve T .

Energy Consumed CG Solve Time
B Joules B Solve Time
8000 70
= 7000 - ~60 -
° 3
aE: 6000 - Q5o
S 5000 - 25
7] O 40 -
g 4000 - e
= 30 -
O 3000 - =
3 S 20
D 2000 - s
Q
- i ? 10 -
S 1000
0 - 0 -
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Cores

= Simple Finite Element Mesh
= Basic solve, simple kernels, optimized for OpenMP and AVX

ﬁ Work with S. Hammond, S. Olivier, T.J. Mannos and J. Lewy (Sandia) i

Looking Deeper...) &

Energy Consumed CG Solve Time
H Joules B Solve Time
3000 20 e
S 18 -
5 2500 - w16 e
(&
“’ D 44 . i
€ 2000 N T]
® o2 I
€ 1500 € 10 -
3 g
(&) = 8-
> 1000 I il
> 2 |
(8} i O 4 -
o 500 N l I
= B
0 - 0 -
12 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Cores

= Approximately 10% - 12% increase in energy consumption
= No significant change in runtime

ﬁ Work with S. Hammond, S. Olivier, T.J. Mannos and J. Lewy (Sandia) i

National

Thoughts on MiniFE Example T

= Small, very simple example — this is just part of an application
= When combined into larger codes we see many different behaviors
" |nput and problem dependent

= Given the importance of some kernels can we make
accelerated functions a part of our design?

= Showed small gain in energy efficiency

= Performance wins are less clear in this example which is heavily
memory bandwidth bound
= .. but we are busy thinking about this problem

Can We Have Impact?)

= The SpMV kernels in MiniFE are the workhouse of some of
Sandia’s workflow (but an important class of problem)

= Between 40 to 95% of application time spent on these kernels
in real problems

= Scale with memory bandwidth not computational
performance

= So have seen very poor optimization over the past decade

= Seeing similar uses in analytics and commercial environments

DISCUSSION AND THOUGHTS

S umma ry] {"::?T(E?énes

= HPC applications are large and complex, even simple ones
are hard to rewrite, there are many in the community that
we depend on

= This is going to cost serious dollars and time if we really make
developers rewrite their code (ASC could be O(SM) — O(SBn))

= Validation and verification costs for climate, weapons etc are huge
(and in some ways may totally dominate our real cost)

= Need to consider total workflow and not just the “sexy” scientific
simulation

= At some level there really are common kernels and patterns

= Think of Phil Colella’s Application Dwarves (still drives how | think
about our community)

= Doesn’t cover 100% of codes but we will never remove the need for
general purpose processor cores

On SoC..)t

= SoC is an opportunity to rethink our plans for Exascale

= Think smaller general purpose, silicon devoted to the things we
actually run

Non-trivial and pushes complexity to the runtimes, libraries and
compilers

But this is an area where these communities tend to work best

" |n my opinion we need to focus on areas where data
movement limits performance

= Move computation to the data (fixed functions?)

= More efficient mechanisms to handle data movement (gather/scatter)

= Parallelism enablement which the wider community may not need
(particularly complex atomic operations in memory)

Resources

= Many resources we use day-to-day are online or significant
parts are online:

= https://github.com/spdomin/Nalu (Single Physics App)

https://github.com/trilinos/trilinos (Solvers)
https://github.com/kokkos/kokkos (C++ Programming Model)

https://github.com/sstsimulator (HW Simulation Infrastructure)

http://www.cs.sandia.gov/qgthreads/ (Lightweight On-node Tasking)

http://www.cs.sandia.gov/Portals (NIC Acceleration)

http://www.mantevo.org (Mini-Apps)

= Continue to look for great summer students, interns, post-
docs and staff .. come be part of our team!

Sandia
National
Laboratories

Exceptional service in the national interest

